
Optimizing CUDA

© NVIDIA Corporation 2009 9

Execution Model

Software Hardware

Threads are executed by thread processors

Thread

Thread
Processor

Thread
Block Multiprocessor

Thread blocks are executed on multiprocessors

Thread blocks do not migrate

Several concurrent thread blocks can reside on
one multiprocessor - limited by multiprocessor
resources (shared memory and register file)

...

Grid Device

A kernel is launched as a grid of thread blocks

Only one kernel can execute on a device at
one time

© NVIDIA Corporation 2009 10

Warps and Half Warps

Thread
Block Multiprocessor

32 Threads

32 Threads

32 Threads

...

Warps

16

Half Warps

16

DRAM

Global

Local

A thread block consists of 32-
thread warps

A warp is executed physically in
parallel (SIMD) on a
multiprocessor

Device
Memory

=

A half-warp of 16 threads can
coordinate global memory
accesses into a single
transaction

© NVIDIA Corporation 2009 11

Memory Architecture

Host

CPU

Chipset

DRAM

Device

DRAM

Global

Constant

Texture

Local

GPU

Multiprocessor
Registers

Shared Memory
Multiprocessor

Registers

Shared Memory
Multiprocessor

Registers

Shared Memory

Constant and Texture
Caches

© NVIDIA Corporation 2009 12

Memory Architecture

Memory Location Cached Access Scope Lifetime

Register On-chip N/A R/W One thread Thread

Local Off-chip No R/W One thread Thread

Shared On-chip N/A R/W All threads in a block Block

Global Off-chip No R/W All threads + host Application

Constant Off-chip Yes R All threads + host Application

Texture Off-chip Yes R All threads + host Application

© NVIDIA Corporation 2009

Outline

Overview

Hardware

Memory Optimizations
Data transfers between host and device

Device memory optimizations

Execution Configuration Optimizations

Instruction Optimizations

Summary

13

© NVIDIA Corporation 2009 14

Host-Device Data Transfers

Device to host memory bandwidth much lower than
device to device bandwidth

8 GB/s peak (PCI-e x16 Gen 2) vs. 141 GB/s peak (GTX
280)

Minimize transfers
Intermediate data can be allocated, operated on, and
deallocated without ever copying them to host memory

Group transfers
One large transfer much better than many small ones

© NVIDIA Corporation 2009 15

Page-Locked Data Transfers

cudaMallocHost() allows allocation of page-
locked (“pinned”) host memory

Enables highest cudaMemcpy performance
3.2 GB/s on PCI-e x16 Gen1

5.2 GB/s on PCI-e x16 Gen2

See the “bandwidthTest” CUDA SDK sample

Use with caution!!
Allocating too much page-locked memory can reduce
overall system performance

Test your systems and apps to learn their limits

© NVIDIA Corporation 2009 16

Overlapping Data Transfers and
Computation

Async and Stream APIs allow overlap of H2D or D2H
data transfers with computation

CPU computation can overlap data transfers on all CUDA
capable devices

Kernel computation can overlap data transfers on devices
with “Concurrent copy and execution” (roughly compute
capability >= 1.1)

Stream = sequence of operations that execute in
order on GPU

Operations from different streams can be interleaved

Stream ID used as argument to async calls and kernel
launches

© NVIDIA Corporation 2009 17

Asynchronous Data Transfers

Asynchronous host-device memory copy returns
control immediately to CPU

cudaMemcpyAsync(dst, src, size, dir, stream);

requires pinned host memory (allocated with
“cudaMallocHost”)

Overlap CPU computation with data transfer
0 = default stream

cudaMemcpyAsync(a_d, a_h, size,

cudaMemcpyHostToDevice, 0);

kernel<<<grid, block>>>(a_d);

cpuFunction();
overlapped

© NVIDIA Corporation 2009 18

Overlapping kernel and data transfer

Requires:
“Concurrent copy and execute”

deviceOverlap field of a cudaDeviceProp variable

Kernel and transfer use different, non-zero streams

A CUDA call to stream-0 blocks until all previous calls
complete and cannot be overlapped

Example:
cudaStreamCreate(&stream1);

cudaStreamCreate(&stream2);

cudaMemcpyAsync(dst, src, size, dir, stream1);

kernel<<<grid, block, 0, stream2>>>(…);
overlapped

© NVIDIA Corporation 2009 19

GPU/CPU Synchronization

Context based

cudaThreadSynchronize()
Blocks until all previously issued CUDA calls from a
CPU thread complete

Stream based

cudaStreamSynchronize(stream)
Blocks until all CUDA calls issued to given stream
complete

cudaStreamQuery(stream)
Indicates whether stream is idle

Returns cudaSuccess, cudaErrorNotReady, ...

Does not block CPU thread

© NVIDIA Corporation 2009 20

GPU/CPU Synchronization

Stream based using events
Events can be inserted into streams:

cudaEventRecord(event, stream)

Event is recorded then GPU reaches it in a stream

Recorded = assigned a timestamp (GPU clocktick)

Useful for timing

cudaEventSynchronize(event)
Blocks until given event is recorded

cudaEventQuery(event)
Indicates whether event has recorded

Returns cudaSuccess, cudaErrorNotReady, ...

Does not block CPU thread

© NVIDIA Corporation 2009

Outline

Overview

Hardware

Memory Optimizations
Data transfers between host and device

Device memory optimizations

Measuring performance - effective bandwidth

Coalescing

Shared memory

Textures

Execution Configuration Optimizations

Instruction Optimizations

Summary

23

© NVIDIA Corporation 2009

Theoretical Bandwidth

Device Bandwidth of GTX 280

1107 * 10^6 * (512 / 8) * 2 / 1024^3 = 131.9 GB/s

Specs report 141 GB/s

Use 10^9 B/GB conversion rather than 1024^3

Whichever you use, be consistent

24

Memory
clock (Hz)

Memory
interface
(bytes)

DDR

© NVIDIA Corporation 2009

Effective Bandwidth

Effective Bandwidth (for copying array of N floats)

N * 4 B/element / 1024^3 * 2 / (time in secs) = GB/s

25

Array size
 (bytes)

Read and
write

B/GB
(or 10^9)

© NVIDIA Corporation 2009

Outline

Overview

Hardware

Memory Optimizations
Data transfers between host and device

Device memory optimizations

Measuring performance - effective bandwidth

Coalescing

Shared memory

Textures

Execution Configuration Optimizations

Instruction Optimizations

Summary

26

© NVIDIA Corporation 2009

Coalescing

Global Memory

Half-warp of threads

} 64B aligned segment (16 floats)

Global memory access of 32, 64, or 128-bit words by a half-
warp of threads can result in as few as one (or two)
transaction(s) if certain access requirements are met

Depends on compute capability

1.0 and 1.1 have stricter access requirements

Examples – float (32-bit) data

}128B aligned segment (32 floats)

27

© NVIDIA Corporation 2009

Coalescing
Compute capability 1.0 and 1.1

K-th thread must access k-th word in the segment (or k-th word in 2
contiguous 128B segments for 128-bit words), not all threads need to
participate

Coalesces – 1 transaction

Out of sequence – 16 transactions Misaligned – 16 transactions

28

© NVIDIA Corporation 2009

Coalescing
Compute capability 1.2 and higher

1 transaction - 64B segment

2 transactions - 64B and 32B segments
1 transaction - 128B segment

Coalescing is achieved for any pattern of addresses that fits into a
segment of size: 32B for 8-bit words, 64B for 16-bit words, 128B for
32- and 64-bit words

Smaller transactions may be issued to avoid wasted bandwidth due
to unused words

29

© NVIDIA Corporation 2009

Coalescing Examples

30

Effective bandwidth of small kernels that copy data

Effects of offset and stride on performance

Two GPUs

GTX 280

Compute capability 1.3

Peak bandwidth of 141 GB/s

FX 5600

Compute capability 1.0

Peak bandwidth of 77 GB/s

© NVIDIA Corporation 2009

Coalescing Examples

31

__global__ void offsetCopy(float *odata, float* idata,
 int offset)
{
 int xid = blockIdx.x * blockDim.x + threadIdx.x + offset;
 odata[xid] = idata[xid];
}

© NVIDIA Corporation 2009

Outline

Overview

Hardware

Memory Optimizations
Data Transfers between host and device

Device memory optimizations

Measuring performance - effective bandwidth

Coalescing

Shared memory

Textures

Execution Configuration Optimizations

Instruction Optimizations

Summary

34

© NVIDIA Corporation 2009 35

Shared Memory

~Hundred times faster than global memory

Cache data to reduce global memory accesses

Threads can cooperate via shared memory

Use it to avoid non-coalesced access
Stage loads and stores in shared memory to re-order non-
coalesceable addressing

© NVIDIA Corporation 2008

Maximize Use of Shared Memory

Shared memory is hundreds of times faster than global
memory
Threads can cooperate via shared memory

Not so via global memory
A common way of scheduling some computation on the
device is to block it up to take advantage of shared memory:

Partition the data set into data subsets that fit into shared
memory
Handle each data subset with one thread block:

Load the subset from global memory to shared memory
__syncthreads()
Perform the computation on the subset from shared memory
– each thread can efficiently multi-pass over any data element

__syncthreads() (if needed)
Copy results from shared memory to global memory

© NVIDIA Corporation 2008

Example:
Square Matrix Multiplication

C = A · B of size N x N
Without blocking:

One thread handles one element of C
A and B are loaded N times from global
memory

A

B

C

N
N

N N

Wastes bandwidth

Poor balance of
work to bandwidth

© NVIDIA Corporation 2008

Example:
Square Matrix Multiplication Example

C = A · B of size N x N
With blocking:

One thread block handles one M x M
sub-matrix Csub of C
A and B are only loaded (N / M) times
from global memory

Much less
bandwidth

Much better
balance of
work to bandwidth

A

B

C

Csub

MM M M

M
M

M
M

N
N

N N

© NVIDIA Corporation 2009 36

Shared Memory Architecture

Many threads accessing memory
Therefore, memory is divided into banks

Successive 32-bit words assigned to successive banks

Each bank can service one address per cycle
A memory can service as many simultaneous
accesses as it has banks

Multiple simultaneous accesses to a bank
result in a bank conflict

Conflicting accesses are serialized

Bank 15

Bank 7

Bank 6
Bank 5

Bank 4

Bank 3
Bank 2

Bank 1
Bank 0

© NVIDIA Corporation 2009 3746

Bank Addressing Examples

No Bank Conflicts

Linear addressing
stride == 1

No Bank Conflicts

Random 1:1 Permutation

Bank 15

Bank 7

Bank 6
Bank 5

Bank 4

Bank 3
Bank 2

Bank 1
Bank 0

Thread 15

Thread 7

Thread 6
Thread 5

Thread 4

Thread 3
Thread 2

Thread 1
Thread 0

Bank 15

Bank 7

Bank 6
Bank 5

Bank 4

Bank 3
Bank 2

Bank 1
Bank 0

Thread 15

Thread 7

Thread 6
Thread 5

Thread 4

Thread 3
Thread 2

Thread 1
Thread 0

© NVIDIA Corporation 2009 38

Bank Addressing Examples

2-way Bank Conflicts

Linear addressing
stride == 2

8-way Bank Conflicts

Linear addressing
stride == 8

Thread 11

Thread 10

Thread 9
Thread 8

Thread 4

Thread 3
Thread 2

Thread 1
Thread 0

Bank 15

Bank 7

Bank 6
Bank 5

Bank 4

Bank 3
Bank 2

Bank 1
Bank 0

Thread 15

Thread 7

Thread 6
Thread 5

Thread 4

Thread 3
Thread 2

Thread 1
Thread 0

Bank 9
Bank 8

Bank 15

Bank 7

Bank 2

Bank 1
Bank 0

x8

x8

© NVIDIA Corporation 2009 39

Shared memory bank conflicts

Shared memory is ~ as fast as registers if there are no bank
conflicts

warp_serialize profiler signal reflects conflicts

The fast case:

If all threads of a half-warp access different banks, there is no
bank conflict

If all threads of a half-warp read the identical address, there is no
bank conflict (broadcast)

The slow case:

Bank Conflict: multiple threads in the same half-warp access the
same bank

Must serialize the accesses

Cost = max # of simultaneous accesses to a single bank

© NVIDIA Corporation 2009

Shared Memory Example: Transpose

40

Each thread block works on a tile of the matrix

Naïve implementation exhibits strided access to
global memory

idata odata

Elements transposed by a half-warp of threads

© NVIDIA Corporation 2009

Coalescing through shared memory

Access columns of a tile in shared memory to write
contiguous data to global memory

Requires __syncthreads() since threads access

data in shared memory stored by other threads

42

Elements transposed by a half-warp of threads

idata odata

tile

© NVIDIA Corporation 2009

Outline

Overview

Hardware

Memory Optimizations

Execution Configuration Optimizations

Instruction Optimizations

Summary

51

© NVIDIA Corporation 2009 52

Occupancy

Thread instructions are executed sequentially, so
executing other warps is the only way to hide
latencies and keep the hardware busy

Occupancy = Number of warps running concurrently
on a multiprocessor divided by maximum number of
warps that can run concurrently

Limited by resource usage:
Registers

Shared memory

© NVIDIA Corporation 2009 53

Blocks per Grid Heuristics

of blocks > # of multiprocessors
So all multiprocessors have at least one block to execute

of blocks / # of multiprocessors > 2
Multiple blocks can run concurrently in a multiprocessor

Blocks that aren’t waiting at a __syncthreads() keep the
hardware busy

Subject to resource availability – registers, shared memory

of blocks > 100 to scale to future devices
Blocks executed in pipeline fashion

1000 blocks per grid will scale across multiple generations

© NVIDIA Corporation 2009 54

Register Dependency

Read-after-write register dependency
Instruction’s result can be read ~24 cycles later

Scenarios: CUDA: PTX:

To completely hide the latency:
Run at least 192 threads (6 warps) per multiprocessor

At least 25% occupancy (1.0/1.1), 18.75% (1.2/1.3)

Threads do not have to belong to the same thread block

add.f32 $f3, $f1, $f2

add.f32 $f5, $f3, $f4

x = y + 5;

z = x + 3;

ld.shared.f32 $f3, [$r31+0]

add.f32 $f3, $f3, $f4

s_data[0] += 3;

© NVIDIA Corporation 2009 55

Register Pressure

Hide latency by using more threads per
multiprocessor

Limiting Factors:
Number of registers per kernel

8K/16K per multiprocessor, partitioned among concurrent
threads

Amount of shared memory

16KB per multiprocessor, partitioned among concurrent
threadblocks

Compile with –ptxas-options=-v flag

Use –maxrregcount=N flag to NVCC

N = desired maximum registers / kernel

At some point “spilling” into local memory may occur

Reduces performance – local memory is slow

© NVIDIA Corporation 2009 57

Optimizing threads per block

Choose threads per block as a multiple of warp size
Avoid wasting computation on under-populated warps

Facilitates coalescing

More threads per block != higher occupancy
Granularity of allocation

Eg. compute capability 1.1 (max 768 threads/multiprocessor)

512 threads/block => 66% occupancy

256 threads/block can have 100% occupancy

Heuristics
Minimum: 64 threads per block

Only if multiple concurrent blocks

192 or 256 threads a better choice

Usually still enough regs to compile and invoke successfully

This all depends on your computation, so experiment!

