

Optimizing CUDA

Warps and Half Warps

A thread block consists of 32thread warps

A warp is executed physically in parallel (SIMD) on a multiprocessor

Memory Architecture

Memory Architecture

Memory	Location	Cached	Access	Scope	Lifetime	
Register	On-chip	N/A	R/W	One thread	Thread	
Local	Off-chip	No	R/W	One thread	Thread	
Shared	On-chip	N/A	R/W	All threads in a block	Block	
Global	Off-chip	No	R/W	All threads + host	Application	
Constant	Off-chip	Yes	R	All threads + host	Application	
Texture	Off-chip	Yes	R	All threads + host	Application	

Outline

Overview
 Hardware
 Memory Optimizations
 Data transfers between host and device

Device memory optimizations

- Execution Configuration Optimizations
- Instruction Optimizations
 - Summary

Host-Device Data Transfers

Device to host memory bandwidth much lower than device to device bandwidth

8 GB/s peak (PCI-e x16 Gen 2) vs. 141 GB/s peak (GTX 280)

Minimize transfers

Intermediate data can be allocated, operated on, and deallocated without ever copying them to host memory

Group transfers

One large transfer much better than many small ones

Page-Locked Data Transfers

cudaMallocHost() allows allocation of pagelocked ("pinned") host memory

Enables highest cudaMemcpy performance

- 3.2 GB/s on PCI-e x16 Gen1
- 5.2 GB/s on PCI-e x16 Gen2

See the "bandwidthTest" CUDA SDK sample

Use with caution!!

- Allocating too much page-locked memory can reduce overall system performance
- Test your systems and apps to learn their limits

Overlapping Data Transfers and Computation

Async and Stream APIs allow overlap of H2D or D2H data transfers with computation

CPU computation can overlap data transfers on all CUDA capable devices

Stream = sequence of operations that execute in order on GPU

- Operations from different streams can be interleaved
- Stream ID used as argument to async calls and kernel launches

Asynchronous Data Transfers

Asynchronous host-device memory copy returns control immediately to CPU

- cudaMemcpyAsync(dst, src, size, dir, stream);
- requires *pinned* host memory (allocated with "cudaMallocHost")

Overlap CPU computation with data transfer

I = default stream

Overlapping kernel and data transfer

Requires:

- "Concurrent copy and execute"
 - deviceOverlap field of a cudaDeviceProp variable
- Kernel and transfer use different, non-zero streams
 - A CUDA call to stream-0 blocks until all previous calls complete and cannot be overlapped

Example:

```
cudaStreamCreate(&stream1);
cudaStreamCreate(&stream2);
cudaMemcpyAsync(dst, src, size, dir, stream1);
kernel<<<grid, block, 0, stream2>>>(...);
overlapped
```

GPU/CPU Synchronization

Context based

- cudaThreadSynchronize()
 - Blocks until all previously issued CUDA calls from a CPU thread complete

Stream based

- cudaStreamSynchronize(stream)
 - Blocks until all CUDA calls issued to given stream complete

cudaStreamQuery(stream)

- Indicates whether stream is idle
- Returns cudaSuccess, cudaErrorNotReady, ...
- Does not block CPU thread

GPU/CPU Synchronization

Stream based using events

Events can be inserted into streams: cudaEventRecord (event, stream)

- Recorded = assigned a timestamp (GPU clocktick)
- Useful for timing

📄 cudaEventSynchronize (event)

Blocks until given event is recorded

- 📄 cudaEventQuery (event)
 - Indicates whether event has recorded
 - Returns cudaSuccess, cudaErrorNotReady, ...
 - **Does not block CPU thread**

Outline

Overview

Hardware

Memory Optimizations

- Data transfers between host and device
- Device memory optimizations
 - Measuring performance effective bandwidth
 - Coalescing
 - Shared memory
 - Textures
- Execution Configuration Optimizations
- Instruction Optimizations

Summary

Theoretical Bandwidth

Device Bandwidth of GTX 280

- Specs report 141 GB/s
 - Use 10^9 B/GB conversion rather than 1024^3
 - Whichever you use, be consistent

Effective Bandwidth (for copying array of N floats)

Outline

Overview

Hardware

Memory Optimizations

- Data transfers between host and device
- Device memory optimizations
 - Measuring performance effective bandwidth
 - Coalescing
 - Shared memory
 - Textures
- Execution Configuration Optimizations
- Instruction Optimizations

Summary

Coalescing

- Global memory access of 32, 64, or 128-bit words by a halfwarp of threads can result in as few as one (or two) transaction(s) if certain access requirements are met
- Depends on compute capability
 - 1.0 and 1.1 have stricter access requirements

Examples – float (32-bit) data

Global Memory

64B aligned segment (16 floats)

128B aligned segment (32 floats)

Half-warp of threads

Coalescing Compute capability 1.0 and 1.1

K-th thread must access k-th word in the segment (or k-th word in 2 contiguous 128B segments for 128-bit words), not all threads need to participate

Coalesces – 1 transaction

Out of sequence – 16 transactions

Misaligned – 16 transactions

Coalescing

Compute capability 1.2 and higher

- Coalescing is achieved for any pattern of addresses that fits into a segment of size: 32B for 8-bit words, 64B for 16-bit words, 128B for 32- and 64-bit words
- Smaller transactions may be issued to avoid wasted bandwidth due to unused words

4	1	1			♠		1	1	1		
				γ						Τ	

1 transaction - 64B segment

2 transactions - 64B and 32B segments

Coalescing Examples

Effective bandwidth of small kernels that copy data
Effects of offset and stride on performance

Two GPUs

- GTX 280
 - Compute capability 1.3
 - Peak bandwidth of 141 GB/s
- FX 5600
 - Compute capability 1.0
 - Peak bandwidth of 77 GB/s

Outline

Overview

Hardware

Memory Optimizations

- Data Transfers between host and device
- Device memory optimizations
 - Measuring performance effective bandwidth
 - Coalescing
 - Shared memory
 - Textures
- Execution Configuration Optimizations
- Instruction Optimizations

Summary

Shared Memory

- ~Hundred times faster than global memory
- Cache data to reduce global memory accesses
- Threads can cooperate via shared memory
- Use it to avoid non-coalesced access
 - Stage loads and stores in shared memory to re-order noncoalesceable addressing

Maximize Use of Shared Memory

- Shared memory is hundreds of times faster than global memory
 - Threads can cooperate via shared memory
 - Not so via global memory
- A common way of scheduling some computation on the device is to block it up to take advantage of shared memory:
 - Partition the data set into data subsets that fit into shared memory
 - Handle each data subset with one thread block:
 - Load the subset from global memory to shared memory
 - __syncthreads()
 - Perform the computation on the subset from shared memory
 - each thread can efficiently multi-pass over any data
 - syncthreads() (if needed)
 - Copy results from shared memory to global memory

Example: Square Matrix Multiplication

Example: Square Matrix Multiplication Example

Shared Memory Architecture

Many threads accessing memory

- Therefore, memory is divided into banks
- Successive 32-bit words assigned to successive banks

Each bank can service one address per cycle

A memory can service as many simultaneous accesses as it has banks

Multiple simultaneous accesses to a bank result in a bank conflict

Conflicting accesses are serialized

Bank Addressing Examples

Bank Addressing Examples

Shared memory bank conflicts

- Shared memory is ~ as fast as registers if there are no bank conflicts
 - warp_serialize profiler signal reflects conflicts
- The fast case:
 - If all threads of a half-warp access different banks, there is no bank conflict
 - If all threads of a half-warp read the identical address, there is no bank conflict (broadcast)

The slow case:

- Bank Conflict: multiple threads in the same half-warp access the same bank
- Must serialize the accesses
- Cost = max # of simultaneous accesses to a single bank

Shared Memory Example: Transpose

Each thread block works on a tile of the matrix

Naïve implementation exhibits strided access to global memory

Elements transposed by a half-warp of threads

Coalescing through shared memory

- Access columns of a tile in shared memory to write contiguous data to global memory
- Requires _____syncthreads() since threads access data in shared memory stored by other threads

Elements transposed by a half-warp of threads

Outline

- Overview
- **Hardware**
- Memory Optimizations
- Execution Configuration Optimizations
- Instruction Optimizations
- Summary

Occupancy

- Thread instructions are executed sequentially, so executing other warps is the only way to hide latencies and keep the hardware busy
- Occupancy = Number of warps running concurrently on a multiprocessor divided by maximum number of warps that can run concurrently
 - Limited by resource usage:
 - Registers
 - Shared memory

Blocks per Grid Heuristics

of blocks > # of multiprocessors

So all multiprocessors have at least one block to execute

of blocks / # of multiprocessors > 2

- Multiple blocks can run concurrently in a multiprocessor
- Blocks that aren't waiting at a __syncthreads() keep the hardware busy
- Subject to resource availability registers, shared memory

of blocks > 100 to scale to future devices

- Blocks executed in pipeline fashion
- 1000 blocks per grid will scale across multiple generations

Register Dependency

Read-after-write register dependency

- Instruction's result can be read ~24 cycles later
- Scenarios: CUDA:

PTX:

To completely hide the latency:

- Run at least 192 threads (6 warps) per multiprocessor
 At least 25% occupancy (1.0/1.1), 18.75% (1.2/1.3)
- Threads do not have to belong to the same thread block

Register Pressure

- Hide latency by using more threads per multiprocessor
- Limiting Factors:
 - Number of registers per kernel
 - 8K/16K per multiprocessor, partitioned among concurrent threads
 - Amount of shared memory
 - 16KB per multiprocessor, partitioned among concurrent threadblocks
- Compile with -ptxas-options=-v flag
- Use -maxrregcount=N flag to NVCC
 - N = desired maximum registers / kernel
 - At some point "spilling" into local memory may occur
 - Reduces performance local memory is slow

Optimizing threads per block

Choose threads per block as a multiple of warp size

- Avoid wasting computation on under-populated warps
- Facilitates coalescing
- More threads per block != higher occupancy
 - Granularity of allocation
 - Eg. compute capability 1.1 (max 768 threads/multiprocessor)
 - 512 threads/block => 66% occupancy
 - 256 threads/block can have 100% occupancy

Heuristics

- Minimum: 64 threads per block
 - Only if multiple concurrent blocks
- 192 or 256 threads a better choice
 - Usually still enough regs to compile and invoke successfully
- This all depends on your computation, so experiment!