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MPI and – Message passing interface
(Chapter 3)
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Introduction to MPI
(https://computing.llnl.gov/tutorials/mpi/)

• All large scale multiprocessors have “physically” distributed memory 
systems.

• A lot of overhead when building a shared address space on top of a 
physically distributed memory system.

• Some problems can naturally be partitioned into parallel sub-problems 
(with possible coordination and synchronization)

• MPI (Message Passing Interface) evolved as the standard interface for 
message passing libraries.

• Note: Sockets is Unix’ way of passing messages and 
many MPI libraries are built using sockets. MPI, 
however, is much easier to use than sockets.

• An MPI implementation allows a user to start 
multiple threads (SPMD programming style) and 
provide functions for the threads to communicate and 
synchronize.
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SPMD Programs
• The user specifies the number of processes and number of processors.
• The same source code is executed by all processes
• One or more process can execute on each processor
• The set of processes is defined as the “MPI_COMM_WORLD”
• Can have different processes do different things by using the process id 

(rank)
– MPI_Comm_rank(MPI_COMM_WORLD, &rank) 

• Subsets of MPI_COMM_WORLD, called communicators, can be defined 
by the user.

Rami’s_world

MPI_Comm_rank(Rami’s_world, &rank) 
supplies the rank within Rami’s_world
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A simple MPI Program

#include <mpi.h>

int main(int argc, char *argv[]) {

int numtasks, my_rank, rc;

rc = MPI_Init(&argc,&argv);

if (rc != MPI_SUCCESS) { 

printf ("Error starting MPI program \n");

MPI_Abort(MPI_COMM_WORLD, rc); 

}

MPI_Comm_rank(MPI_COMM_WORLD,&my_rank);

MPI_Comm_size(MPI_COMM_WORLD,&numtasks);

if (my_rank == 0) { /* master */

printf (“#of tasks= %d, My rank= %d\n",numtasks,rank);

} else { /* worker */

printf (“My rank= %d\n", rank);

}

MPI_Finalize();

}

Has to be called first, and once

Has to be called last, and once
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Point-to-Point Communication

Can be explicitly 
allocated (in buffered 
send/receive)

Sending process Receiving processKernel KernelNetwork

Path of a message across address spaces
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Blocking Point-to-Point Communication

MPI_Send(x, #_of_items, item_type, dest_rank, tag ,communicator);

MPI_Recv(x, #_of_items, item_type, source_rank, tag, communicator, 
&status);

Address of data 
(usually variable name)

For pairing send 
with receive

A structure of type 
MPI_Status

Predefined: MPI_CHAR, 
MPI_INT, MPI_FLOAT, …

Blocking: Return after the sender application buffer is free for reuse, or 
the application buffer received the message, respectively. 

MPI_Send

Source_rank

MPI_Recv

Dest_rank
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Out of order receiving

MPI_Recv(x, MAX_items, item_type, MPI_ANY_SOURCE, MPI_ANY_TAG, 

communicator, &status);

Larger or equal to 
expected size

Allows message reception from 
any source

{ MPI_SOURCE

MPI_TAG

MPI_ERROR }

MPI_Status*

MPI_Get_count(MPI_Status status /*in*/ , MPI_Datatype type /*in*/ ,
int*  count /*out*/);

Get actual values 
using
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Non-blocking Point-to-Point Communication

MPI_Isend(x, #_of_items, item_type, dest_rank, tag ,communicator, 
&request);

MPI_Irecv(x, #_of_items, item_type, source_rank, tag, communicator, 
&request);

MPI_Wait(&request, &status);

MPI_Waitall(count, array of requests, array of statuses);

MPI_Test(&request, &flag, &status);
MPI_Testall();
MPI_Testsome();
MPI_Testany();

A request number returned by MPI. 
Of type MPI_Request

Returns “true” (1) if operation had 
completed and “false (0), otherwise

non-blocking

Blocks until the operation corresponding 
to “request” is completed



9

Types of send/receive

• Blocking: MPI_Send() and MPI_Recv()

o Return after the sender application buffer is free for reuse, or the 
application buffer received the message, respectively. 

• Synchronous blocking: MPI_Ssend()

o Returns after the destination process received the message

• Non-blocking: MPI_Isend() and MPI_Irecv()

o Returns immediately. MPI_wait and MPI_Test indicate that the non-
blocking send or receive has completed locally

• Synchronous non-blocking: MPI_Issend()

o Returns immediately. MPI_wait and MPI_Test indicate that the 
destination process has received the message

• Buffered: allows the programmer to explicitly control system buffers.

There are other send/receive routines with 
different blocking properties
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Example – The trapezoidal rule for integration
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// apply trapezoidal rule from local_a  to local_b

// n, a and b are the input to the program
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Dealing with input
Most MPI implementations only allow process 0 in MPI_COMM_WORLD 
access to stdin. Hence, it must read the data and send to the other processes.

Bad practice to depend on 
in-order message delivery. 
Should use tags
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Type of messages

 Point-to-point: one processor sends a message 
to another processor

 One-to-all: one processor broadcasts a message 
to all other processors

 One-to-all personalized: one processor sends a 
different message to each other processor

 All-to-all: each processor broadcasts a message 
to all other processors

 All-to-all personalized: each processor sends a 
different message to each other processors

Pi Pj

Pi

Pk

P0

…

Pi

Pk

P0...
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• Can be built using point-to-point communications, but typical MPI 
implementations have optimized them

• All processes place the same call, although depending on the process, some 
arguments may not be used

MPI_Bcast(x, n_items, type, root, MPI_COMM_WORLD)

MPI_Barrier(MPI_COMM_WORLD)

MPI_Reduce(x,r,n_items,type,op,root,MPI_COMM_WORLD) 

Private data to 
be reduced

Location of 
reduced data

Operator used in reduction: MPI_MAX, 
MPI_SUM, MPI_PROD, …

MPI_Allreduce(x,r,n_items,type,op,MPI_COMM_WORLD) 

Same as MPI_Reduce() except that every thread gets the result, not 
only “root” (equivalent to MPI_Reduce followed by MPI_Bcast)

Collective communication
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Efficiency of MPI_Allreduce 

A global sum followed
by distribution of the result.

A butterfly-structured 
(hypercube)global sum.
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Order of collective Communication 

• Collective communications do not use tags – they are matched purely on the 
basis of the order in which they are called

• The names of the memory locations are irrelevant to the matching

• Example: Assume three processes with calling MPI_Reduce with operator 
MPI_SUM, and destination process 0. 

• The order of the calls will determine the matching so, in process 0, the value 
stored in b will be 1+2+1 = 4, and the value stored in d will be 2+1+2 = 5.
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Scatter (personalized broadcast – one to many)

MPI_Scatter(s, n_s, s_type, r, n_r, r_type, root, MPI_COMM_WORLD) 

Data to be scattered, 
needed only at root

# of Items sent 
to each thread

Location of 
scattered data

# of Items received 
by each thread

Proc. 0 
(root)

Proc. 1

Proc. 2

Proc. 3

s r

n_s n_r
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Scatter Example

int main(int argc,char **argv) {
int *a;
double *recvbuffer;
... 
MPI_Comm_size(MPI_COMM_WORLD,&n);
if (my_rank == 0) { /* master */

<allocate array a of size N>
<allocate array recvbuffer of size N/n>
MPI_Scatter(a, N/n, MPI_INT, recvbuffer, N/n, MPI_INT, 

0, MPI_COMM_WORLD); 
} else { /* worker */

<allocate array recvbuffer of size N/n>
MPI_Scatter(NULL, 0, MPI_INT,  recvbuffer, N/n, MPI_INT, 

0, MPI_COMM_WORLD);
}

...

}

Can use 
MPI_IN_PLACE
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Gather (many to one)

MPI_Gather(s, n_s, s_type, r, n_r, r_type, root, MPI_COMM_WORLD) 

Data to be gathered

MPI_Allgather(s, n_s, s_type, r, n_r, r_type, MPI_COMM_WORLD) 

Proc. 0 
(root)

Proc. 1

Proc. 2

Proc. 3

r s

n_r n_s

Location of 
gathered data

No “root”
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Examples of global-local data mapping
• Consider nxn matrix/vector multiplication y =A * x on P processors.
• To minimize communication, partition A and y row wise. 

= *

• Each processor, pid, will allocate two k = n/P vectors for its shares of x and y
and an kxn matrix (call it local_A[]) for its share of A.

• In SOR (Laplace iterative solver), we may simplify 
programming by augmenting the local domains by a stripe to 
accommodate boundary data received from other processors. 

local_A[i,j] = A[k*pid + i , j]
local_y[i] = A[k*pid + i]

n

k



21

Example: Matrix-vector multiplication

y xA

local_y local_xlocal_A
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All to all personalized

MPI_Alltoall(s, n_s, s_type, r, n_r, r_type, MPI_COMM_WORLD) 

D 0,0 D 0,1 D 0,2 D 0,3 D 0,0

D 0,1

D 0,2

D 0,3

D 1,0 D 1,1 D 1,2 D 1,3

D 3,0 D 3,1 D 3,2 D 3,3

D 1,0

D 1,1

D 1,2

D 1,3

D 3,0

D 3,1

D 3,2

D 3,3

s r

n_s n_r

Example: Matrix transpose



23

Derived data types

• Used to represent any collection of data items in memory by storing both 
the types of the items and their relative locations in memory.

• This allows the use of these data types in the send and receive calls.

• Formally, consists of a sequence of basic MPI data types together with a 
displacement for each of the data types.

• Trapezoidal Rule example:
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What more can you do?
• Build virtual topologies
• Define new communicators from MPI_COMM_WORLD

• Extract handle of old group 

• MPI_Comm_group ()

• Form new group as a subset of old group

• MPI_Group_incl () 

• Create new communicator for new group

• MPI_Comm_create ()

• Determine new rank in new communicator

• MPI_Comm_rank ()

• Communicate in new group 

• Free up new communicator and group

• MPI_Comm_free ()

• MPI_Group_free ()
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Overlapping communication and computation

• Example in SOR can
• Isend
• Ireceive
• Do computation that do not depend on received message
• Wait for receive to complete
• Complete the computation.


