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Abstract Most current compiler optimizations focus on improving execution time. With
the increasingly widespread use of embedded systems, however, power/energy
consumption is also becoming an important issue. This is particularly true for
battery-operated devices where power consumption hasfirst class status along
with performance and form factor.

This paper makes the following contributions. First, we present two low-level
(back-end) compiler optimizations for energy reduction. An important conclu-
sion drawn from evaluating the impact of these optimizations is that compiling
for power/energy is different from compiling for execution cycles. Second, we
evaluate widely used state-of-the-art high-level compiler optimizations from a
power consumption perspective. Further, we compare the relative impact of
these high-level optimizations on both energy and performance metrics in order
to identify any differences in optimizing for energy and performance. Finally,
we cover a set of optimizations that are designed specifically for exploiting low
power features supported by the hardware. In particular, we show how loop and
data transformation can be used to exploit low-power mode control mechanisms
available in some memory architectures.
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1. Introduction

Energy has become an important design consideration, together with per-
formance, in computer systems. While energy conscious design is obviously
crucial for battery driven mobile and embedded systems, it has also become
important for desktops and servers due to packaging and cooling requirements
where power consumption has grown from a few watts per chip to over a 100
watts. As a result, there has been a great deal of interest recently in examining
optimizations for energy reduction from both the hardware and software points
of view.

While hardware optimizations has been the focus of several studies and
are fairly mature, software approaches to optimizing power are relatively new.
Progress in understanding the impact of traditional compiler optimizations and
developing new power-aware compiler optimizations are important to overall
system energy optimization. Software has a significant impact on the overall
energy consumption being the main determinant for activity on the processor
core, interconnect and memory system, which are, collectively, responsible for
significant percentage of total power dissipation. Despite this observation, to
date, most of the compiler techniques consider only delay and area as their
main performance metrics. With the growing demand for power-aware soft-
ware, there is an acute need for investigating energy-oriented compilation tech-
niques and their interaction and integration with performance-oriented com-
piler optimizations. In this chapter, we seek answers for the following ques-
tions:

Is the most efficient code from the performance perspective the same as
that for the energy viewpoint? If not, why?

What is the impact of current performance-oriented software optimiza-
tions (that primarily aim at maximizing data locality and enhancing par-
allelism [16]) on energy? How do they affect the energy consumption of
different system components (memory system, datapath, etc.)?

What are the relative gains obtained using software and hardware opti-
mization techniques? How can one exploit the interaction between these
optimizations to reduce energy further?

We believe that any progress made in answering them will pave the way
for our understanding of impacts and interactions of hardware and software
optimizations.

The rest of this chapter is organized as follows. In Section 2, we present
two energy-aware low level compiler optimizations. Next, we evaluate the
influence of performance-oriented software optimizations on energy in Sec-
tion 3. In Section 4, we show how hardware and software optimizations for
energy interact with each other. Finally, we conclude in Section 5.
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2. Energy-Aware Low-Level Compiler
Optimizations

In this section, we present two low-level compiler techniques to reduce
energy consumption. First, we show how instruction scheduling can be per-
formed to reduce energy consumption in the datapath. Second, we present
a post-compilation optimization that relabels registers to minimize switching
energy in the buses.

2.1 In
uence of Instruction Scheduling on
Energy

Traditionally, optimizing compilers use instruction scheduling or reordering
instructions to improve datapath performance. There have been several efforts
at tuning the instruction schedulers to optimize energy consumption. A key
observation behind all these optimizations is that the major determinant of the
energy consumption is the switching activity in the datapath. Thus, by ordering
instructions in the schedule such as to reduce this switching activity between
successive instructions, an energy-aware schedule can be created. An instruc-
tion scheduling algorithm calledcold scheduling that prioritizes the selection
of each instruction based on the energy cost of placing that instruction next
into the schedule is proposed by Su et al. [12]. Tiwari et al. [13, 14, 8] and
Russell and Jacome [11] used instruction-level energy characterization based
on current measurements to study the impact of instruction ordering on energy
consumption.

In order to capture, the essence of the energy-oriented scheduling mecha-
nisms, we explain a pure energy-oriented version of list scheduling given in
Figure 10.1. Each instruction is assumed to have a base cost, denoting its av-
erage energy consumption. A weighted edge between nodesi andj gives the
energy consumed by the activity of switching from instructioni to instruc-
tion j.1 This edge weight is also calledcircuit-state effect (circuit-state cost
or inter-instruction cost) [13]. Since the type and number of instructions (a
process calledinstruction selection) arefixed prior to instruction scheduling,
a successful scheduling algorithm can only reduce the total circuit-state effect.
The pure energy-oriented scheduling accomplishes this as follows. First, it se-
lects one of the schedulable nodes (sayi) and schedules it. In the next step,
it attempts to select a nodej such that the circuit state effect betweeni and
j is minimal among all possible alternatives; in the following step, a nodek
is selected such that the circuit-state cost betweenj andk is minimum and so
on. This approach is also greedy, in that it tries to minimize the cumulative
circuit-state cost up to the current point in each step. One noticeable difference
between this approach and the classical performance-oriented list scheduling
is that the latter considers the maximum delay among the candidate nodes (that
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energyi;j – inter-instruction (circuit-state) cost between
the instructionsi andj

last – last instruction executed

schld=/0
while can-sch6= /0 do

if schld = /0 then
n = can-sch[1]

else
min-energy = +∞
for eachj 2 can-sch do

if energylast;j < min-energy then
min-energy = energylast;j
n = j

last = n
schld� = [n]
can-sch - =fng
for eachi 2 succ(n) do

if 8m 2 pred(i) 9j such that schld[j]=m then
can-sch[ = fig

return (schld)

Figure 10.1. Energy-Oriented Scheduling

is, it considers the nodes that have not been scheduled yet) whereas the former
considers the total circuit-state cost so far (that is, it considers the nodes that
have already been scheduled). The algorithms proposed by [12] and [13] also
use a similar approach.

Through extensive experimentation presented in [9], we found that a pure
performance-oriented scheduling technique does not necessarily generate the
most energy-efficient code. A pure energy-oriented scheduling, on the other
hand, is found to be quite effective in reducing the energy consumption; addi-
tionally, it was only 6% worse than the pure performance scheduling as far as
the execution cycles are concerned for studied configurations. Instead of op-
timizing for energy and performance separately, instruction scheduling tech-
niques that consider energy and delay simultaneously in a unified setting can
also be designed. Parikh et. al. show that such combined metrics are effective
in reducing both datapath energy and performance.

One of the difficulties of instruction scheduling for energy is in estimating
the impact of the data portions of the instructions. Thus, in addition to instruc-
tion scheduling, techniques such operand re-ordering (e.g., swapping operands
in ALU or floating point operations) can be very effective in reducing switch-
ing activity on buses. In the next subsection, we show how to reduce switching
activity in the operandfields of instructions.
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2.2 In
uence of Register Assignment on Bus
Energy

In this section, we focus on reducing the switching activity on the Icache
data bus (between the processor core and Icache) by relabeling the register
fields of the compiler generated instructions. Sample traces are used to record
the transition frequencies between register labels (encodings) in the instruc-
tions executed in consecutive cycles usingSimplePower [15]. This information
is then used to obtain new encodings for the registers such that the switching
activity (and consequently the energy consumption) in the Icache data bus is
reduced. The technique is applicable to any system where switching activ-
ity imposed by register labels has an impact on overall energy consumption.
The encoding of instructions using relabeling can be considered similar to data
encoding techniques investigated for data.

To illustrate the idea, let us consider two consecutiveadd instructions in the
SimplePower assembly language:

add si,s j,sk

add sl,sm,sn

In this simple sequence, there are three switching activities between registers:
(1) from si to sl in the destination-register slot, (2) froms j to sm in the first
source-register slot, and (3) fromsk to sn in the second source-register slot. De-
pending on the encodings of the registers involved, the impact of these switch-
ing activities can be quite significant. Theseregister transitions can also occur
between different types of instructions.

It should be clear that for registerfields that have frequent transitions, we
need to use register numbers whose Hamming distance is minimum. The prob-
lem is that register assignments are done by the compiler using sophisticated
algorithms and considering a number of other important issues such as min-
imizing register spills and maximizing register reuse. Therefore, we cannot
arbitrarily change the register numbers, just to minimize power consumption.
Such modifications, among other things, can also violate data dependences
across instructions, thereby changing the semantics of the program being op-
timized. On the other hand, other alternatives, namely, determining a near-
optimal register assignment considering both power and performance is very
difficult.

We developed a post-pass, polynomial-time algorithm that relabels the reg-
istersafter global register allocation performed by the compiler back-end. Re-
labeling registers is always legal as long as it is performed throughout the code.
For example, if we decide to relabelsi ass j, all the occurrences ofsi should
be changed tos j. Also, if we are to perform relabeling for multiple pairs, this
should be done simultaneously for all pairs. Informally, our post-pass algo-
rithm takes a compiler-generated register assignment (register allocation) as
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input and generates an alternative assignment that reduces the power, main-
taining the same performance as the original assignment.

The register relabeling optimization was incorporated in theSimplePower
compilation framework by modifying the Simplescalar toolset. When the op-
timization was evaluated using several applications, we observed a 12% re-
duction in the total energy reduction in the Icache data bus using the register
relabeling optimization [18].

3. In
uence of High-Level Loop Optimizations
on Energy

Software techniques aimed at memory power optimizations are more recent
as the traditional emphasis has been on improving performance. The goals of
these transformations are to reduce the redundancy in data transfers, and to
introduce more locality in the accesses so that more data can be retained in
registers local to the datapaths and the part of the memory hierarchy closer to
the processor. Typically, accessing memory smaller and closer to the datapath
reduces the effective capacitance that is switched, thereby reducing the overall
energy consumption. Some of the optimizations may, however, result in energy
consumption to increase in other system components. In order to understand
these tradeoffs better, we evaluate the impact of three widely used high-level
compiler optimizations on a simple matrix multiply code.

3.1 Overview of High-Level Optimizations

In this subsection, we provide an overview of the optimizations considered.
They are as follows:

Linear Loop Transformations: The linear loop transformations attempt to
improve cache performance, instruction scheduling, and iteration-level paral-
lelism by modifying the traversal order of the iteration space of the loop nest.
The simplest form of loop transformation, called loop interchange [16], can
improve data locality (cache utilization) by changing the order of the loops.
From the power consumption point of view, by applying this transformation
we can expect a reduction in the total memory power due to better utiliza-
tion of the cache [6]. The power consumed in other parts of the system can
potentially increase as some loop transformations can result in complex loop
bounds and array subscript expressions. This may occur, for example, with
loop transformations used for eliminating data dependencies alone.

Loop Tiling: Another important technique used to improve cache perfor-
mance is blocking, or tiling [17]. When it is used for cache locality, arrays
that are too big tofit in the cache are broken up into smaller pieces (tofit in
the cache). When we consider power, potential benefits depend on the changes
in power dissipation induced by the optimization on different system compo-
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nents. We can expect a decrease in power consumed in memory, due to better
data reuse [10, 2]. On the other hand, in the tiled code, we traverse the same
iteration space of the original code using twice as many loops (in the most gen-
eral case); this entails extra branch control operations and macro calls. These
extra computations might increase the power dissipation in the components of
the system. The exact increase/reduction in power consumed in this example
will depend on the problem size (n), the tile size (t), and the architecture un-
der consideration. Note that improving the energy consumption in the memory
system using compiler optimizations may make the energies consumed in the
core and the memory system comparable, rendering the core power consump-
tion more significant than before.

Loop Unrolling: This optimization unrolls a given loop, thereby reducing
loop overhead and increasing the amount of computation per iteration. From
the power point of view, fewer computations means less power dissipation. In
addition, we can also expect a reduction in the power consumed in the register
file and data buses. The power consumed in the datapath will also be affected
by the low-level optimizations performed by the back-end compiler.

3.2 Experimental Evaluation

We evaluated the energy consumptions for the matrix multiply code for
different cache topologies (configurations) and program versions (each cor-
responding to different combinations of three optimizations mentioned above).
The first observation we made is that all optimizations except loop unrolling
increase the core power. This is due to the fact that the optimized versions gen-
erally have more complex loop structures; that, in turn, means extra branches
and more complex subscript and loop bound calculations. Loop unrolling is an
exception, as it reduces loop control overhead and enables better loop schedul-
ing.

When considering the memory power, on the other hand, we made the fol-
lowing observations. First, with the increasing cache size and/or associativity,
tiling performs better than pure linear loop transformations and unrolling. Un-
like those optimizations, tiling exploits locality in all loop nest dimensions;
increasing associativity helps to eliminate conflict misses between different ar-
ray tiles. Second, in the original (unoptimized) code, the memory power is 5
to 47 times larger than the core power. However, after some optimizations, this
picture changes. In particular, beyond a 2K, 2-way set associative cache (i.e.,
higher associativities or larger caches), the core and memory powers become
comparable when some optimizations are applied. For example, when tiling
is applied for a 2K, 4-way associative cache, the memory energy is 0.0764 J,
which is smaller than the core energy, 0.0837 J. Similarly, for the most opti-
mized version (that uses all three optimizations), the core and memory energy
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Version Miss Rates
#! 1-way 2-way 4-way 8-way

1K 0.1117 0.1020 0.1013 0.1013
2K 0.0918 0.0989 0.1013 0.1013

original 4K 0.0737 0.0330 0.0245 0.0150
8K 0.0680 0.0214 0.0117 0.0117

1K 0.0278 0.0119 0.0113 0.0104
2K 0.0185 0.0107 0.0099 0.0099

linear transformed 4K 0.0135 0.0100 0.0099 0.0099
8K 0.0118 0.0099 0.0099 0.0099

1K 0.0678 0.0384 0.0359 0.0359
2K 0.0479 0.0362 0.0359 0.0359

unrolled 4K 0.0358 0.0198 0.0145 0.0173
8K 0.0294 0.0135 0.0077 0.0077

1K 0.0180 0.0055 0.0039 0.0039
2K 0.0105 0.0028 0.0016 0.0016

tiled 4K 0.0046 0.0016 0.0012 0.0013
8K 0.0027 0.0008 0.0007 0.0006

Figure 10.2. Miss Rates for the Matrix Multiply Code

consumptions are very close for a 4K, 4-way set associative cache. This shows
that when we apply optimizations, we reduce the memory energy significantly
making the contribution of the core energy more important. Since we expect
these optimizations (in particular, loop tiling) to be applied frequently by opti-
mizing compilers, reducing core power using additional techniques might be-
come very important. Overall, the power optimizations should not focus only
on memory, but need to consider the overall system power. In fact, the choice
of best optimization for this example depends strongly on the underlying cache
topology. For instance, when we consider the total energy consumed in the sys-
tem, for a 4K, 2-way cache, the version that uses only loop permutation and
unrolling performs best. Whereas for an 8K, 8-way cache, the most optimized
version (that uses all three optimizations) outperforms the rest. In fact, given
a search domain for optimizations and a target cache topology, an optimizing
compiler can decide which optimizations will be most suitable.

3.3 Cache Miss Rates versus Energy
Consumptions

We now investigate the correlation between cache miss rate and energy con-
sumption. Figure 10.2 gives the miss rates for some selected cases. This
subsection will make some correlations between miss rates and energy con-
sumptions. Let usfirst consider the miss rates and energy consumption of the
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original (unoptimized) code. When we move from one cache configuration to
another, we have a similar reduction rate for energy as that for miss rate. For
instance, going from 1K, 1-way to 1K, 2-way reduces the miss rate by a factor
of 1.10 and reduces the energy by the same factor. As another example, when
we move from 1K, 1-way to 4K, 8-way, we reduce the miss rate by a factor of
7.45, and the corresponding energy reduction is a factor of 7.20. These results
show that the gain in energy obtained by increasing associativity is not offset,
in general, by the increasing complexity of the cache topology. As long as a
larger or higher-associative cache reduces miss rates significantly (for a given
code), we might prefer it, as the negative impact of the additional complexity
is not excessive. However, we note that when moving from one cache config-
uration to another, if there is not a significant change in miss rate (as was the
case in our experiments when going from 1K, 4-way to 1K, 8-way), we incur
an energy increase. This can be expected as, everything else being equal, a
more complex cache consumes more power (due to more complex matching
logic).

Next, we investigate the impact of various optimizations for afixed cache
(and memory) topology. The following three measures are used to capture the
correlation between the miss rates and energy consumption of the original and
optimized versions.

Improvement
m
=

Miss rate of the original code

Miss rate of the optimized code
;

Improvement
e
=

Memory energy consumption of the original code

Memory energy consumption of the optimized code
;

Improvement
t
=

Total energy consumption of the original code

Total energy consumption of the optimized code
:

In the following discussion, we consider four different cache configurations:
1K, 1-way; 2K, 4-way; 4K, 2-way; and 8K, 8-way. Given a cache configura-
tion, the following table shows how these three measures vary when we move
from the original (unoptimized) version to an optimized (tiled) version of the
matrix multiply code.

1K, 1-way 2K, 4-way 4K, 2-way 8K, 8-way
Improvement

m
6.21 63.31 20.63 19.50

Improvement
e

2.13 18.77 5.75 2.88
Improvement

t
1.96 9.27 3.08 1.47

We see that in spite of very large reductions in miss rates as a result of
tiling, the reduction in energy consumption is not as high. Nevertheless, it still
follows the miss rate. We made the same observation in different benchmark
codes as well. We have found thatImprovement

e
is smaller thanImprovement

m

by a factor of 2 - 15. Including the core (datapath) power makes the situation
worse for tiling (from the energy point of view), as this optimization increases
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the core energy consumption. Therefore, compiler writers for energy-aware
systems can expect an overall energy reduction as a result of tiling, but not as
much as the reduction in the miss rate. Thus, optimizing compilers that esti-
mate the miss rate (before and after tiling) statically at compile time can also
be used to estimate an approximate value for the energy variation. The follow-
ing table gives the same improvement measures for the loop unrolled version
of the matrix multiply code.

1K, 1-way 2K, 4-way 4K, 2-way 8K, 8-way
Improvement

m
1.65 2.82 1.67 1.52

Improvement
e

2.07 3.53 2.07 1.83
Improvement

t
2.03 3.37 1.97 1.68

The overall picture here is totally different. First,Improvement
e

is larger
thanImprovement

m
, which proves that loop unrolling is a very useful trans-

formation from the energy point of view. Including the core power makes only
a small difference, as this optimization reduces the core power as well. We
should mention that our other experiments (not presented here due to lack of
space) yielded similar results. We now look at the loop transformed version of
the same code:

1K, 1-way 2K, 4-way 4K, 2-way 8K, 8-way
Improvement

m
4.02 10.23 3.30 1.18

Improvement
e

3.42 8.51 2.74 0.99
Improvement

t
3.17 6.84 2.32 0.94

Here,Improvement
e

closely followsImprovement
m
. Including the core

energy brings the energy improvement down further, as in this example, the
loop optimization results in extra operations for the core. In the experiments
with other cache configurations, we observed similar trends:Improvement

e

generally followsImprovement
m
; but it is slightly lower. And,Improvement

t

is smaller thanImprovement
e

by a factor of 1.05 to 1.80.
We can conclude that the energy variations do not necessarily follow miss

rate variations in the optimized array-dominated codes.

4. Interaction of Hardware and Software
Optimizations

In this section, we focus specifically on memory system energy due to data
accesses and illustrate how software and hardware optimizations affect this
energy.

4.1 Hardware Optimizations

A host of hardware optimizations have been proposed to reduce the energy
consumption. In this section, we focus on two cache optimizations, namely,
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block buffering and cache subbanking [5]. Note that none of these optimiza-
tions cause a noticeable negative impact on performance. In the block buffering
scheme, the previously accessed cache line is buffered for subsequent accesses.
If the data within the same cache line is accessed on the next data request, only
the buffer needs to be accessed. This avoids the unnecessary and more energy
consuming access to the entire cache data and tag array. Multiple block buffers
can be thought of as a small sized Level 0 cache. In the cache subbanking opti-
mization, the data array of the cache is divided into several subbanks and only
the subbank where the desired data is located is accessed. This optimization
reduces the per access energy consumption.

We studied the energy consumed by the matrix multiply code in the data
cache with different configurations of block buffers and subbanks (the number
of block buffers being either 2, 4 or 8 and the number of sub-banks varying
from 1 to 4) for a 4K cache with various associativities. This result showed
that increasing the number of sub-banks from one to two provides an energy
saving of 45% for the data cache accesses. An additional 22% saving is ob-
tained by increasing the number of sub-banks to 4. It must be observed that the
savings are not linear as one may expect. This is because the energy cost of the
tag arrays remains constant, while there being a small increase in energy due to
additional sub-bank decoding. We found that for block buffering adding a sin-
gle block buffer reduced the energy by up to 50%. This reduction is achieved
by capturing the locality of the buffered cache line, thereby avoiding accesses
to the entire data array. However, access patterns in many applications can be
regular and repeating across a varied number of different cache blocks. In or-
der to capture this effect, we varied the number of block buffers to two, four,
and eight as well. We observed that, for our matrix multiply benchmark, an
additional 17% (as compared to a single buffer) energy saving can be achieved
using four buffers.

We also found that using a combination of eight block buffers and four sub-
banks, the energy consumed in 4K (16K) data cache could be reduced on an
average by 88% (89%). Thus, such hardware techniques can reduce the energy
consumed by processors with on-chip caches. However, if we consider the
entire memory system including the off-chip memory energy consumption, the
energy savings from these techniques amount to only 4% (15%) when using a
4K (16K) data cache. Thus, it may be necessary to investigate optimizations at
the software level to supplement these optimizations.

4.2 Combined Optimizations for Memory
Energy

It was found that when a combination of different software (loop tiling, loop
unrolling, and linear loop transformations) and hardware (block buffering and
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subbanking) optimizations is applied, tiling performs the best among the three
individual compiler optimizations applied in terms of memory system energy
across different cache configurations. Since, we mentioned earlier that tiling
increases the cache energy consumption, subbanking and block buffering are
of particular importance here. For the tiled code, moving from a base data
cache configuration to one with eight block buffers and four subbanks reduces
the overall memory system energy by around 10%. Thus, it is important to use
a combination of hardware and software optimizations in designing an energy-
efficient system.

Further, we observed that the linear loop transformed codes exploited the
block buffers better than the original code and other optimizations. For ex-
ample, when using two (eight) block buffers in a 4K 2-way cache, the block
buffer hit rate was 69% (82%) as compared to the 55% (72%) for the unopti-
mized matrix multiply code. Thus, it is also important to choose the software
optimizations such that they provide the maximum benefits from the available
hardware optimizations.

Overall, we observe that even performance based compiler optimizations
provide a significantly higher energy savings as opposed to those gained using
the pure hardware optimizations considered. However, a closer observation
reveals that hardware optimization become more critical for on-chip cache en-
ergy reduction when executing optimized codes. We refer the reader to [5]
for more discussion on this topic. In the next two sections, we show how we
could design software optimizations to improve the effectiveness of low power
hardware features.

4.3 Improving E�ectiveness of Power Mode
Control Mechanisms Using Code
Transformations

Memory (DRAM) modules can be placed in different power modes charac-
terized by different energy consumption per cycle and different latencies to ser-
vice requests. While it is possible to exploit these power modes in optimizing
the DRAM energy without modifying the original code (except for inserting
instructions to set operating modes), it is also possible to obtain further energy
savings by employing computation (loop nest-based) transformations [4]. In
this section, we show how loopfission, a widely-used high-level optimization
technique can be used to improve the effectiveness of power mode control.

Loopfission (also known as loop distribution [16]) takes a nested loop that
contains multiple statements in it, and creates multiple nested loops each with
a subset of the original statements. An optimizing compiler can use loopfis-
sion for a number of reasons which include improving instruction cache local-
ity and enhancing iteration-level parallelism. This optimizationfirst builds a
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statement-level dependence graph (in which the nodes denote statements and
the edges correspond to data dependences between them) for the body of the
nested loop. Then, if there are no cycles in the dependence graph, the opti-
mization creates a separate loop for each statement. Otherwise, the statements
in a (dependence) cycle remain in the same loop. If the nested loop contains
multiple loops, loopfission is applied starting from the innermost position,
and infissioning the outer loops, the inner loops are treated as single block
statements. Note that even in cases where each statement can be put into a sep-
arate loop nest an optimizing compiler may choose not to do so for some other
reason such as improving data cache locality or reducing code expansion.

Loop fission helps to improve the effectiveness of array allocation by al-
lowing a finer-granular control over the allocation of arrays. For instance, in
the example shown below (assuming that the arrays are of the same size and
each memory bank can hold at most two arrays), with the original nest, the two
banks that contain the four arrays should be in the active mode throughout the
entire execution. After the loopfission, on the other hand, only a single bank
needs to be in the active mode during the execution of each loop (assuming
that array allocation placesa andb into one bank, andc andd into the other).
The other bank can be put into a low-power mode, thereby saving energy.

for(i=0;i<N;i++)
f
fU[i],V[ i]g
fW[i],X[ i]g
g

=)
for(i=0;i<N;i++)
fU[i],V[ i]g

for(i=0;i<N;i++)
fW[i],X[ i]g

The overall algorithm for loopfission for energy is given in Figure 10.3.
The purpose of this algorithm is to try different loopfissioning strategies for
a given nested loop. If there areK instructions within the loop nest, the main
‘for loop’ in the algorithm enumeratesK�1 alternatives. The ith alternative is
formed by breaking up the nest into two nests after the ith statement from the
beginning of the nest (if it is legal to do so). We also add two more alternatives
to theseK�1 alternatives: the original nest and a code withK nested loops
each with its own statement (again, if this is legal). TheK + 1 alternatives
considered by the algorithm in Figure 10.3 are as follows:
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for(...)
f
S1

S2

S3

...
SK�1

SK

g

,

for(...)
S1

for(...)
f

S2

S3

...
SK�1

SK

g

,

for(...)
f

S1

S2

g
for(...)
f

S3

...
SK�1

SK

g

,....,

for(...)
f

S1

S2

S3

...
SK�1

g
for(...)

SK

,

for(...)
S1

for(...)
S2

for(...)
S3

...
for(...)

SK

For each alternative, the estimated dynamic energy consumption is calcu-
lated, and the alternative with the minimum energy consumption is selected.
Although we evaluate only a limited set of alternatives, our experimentation
indicated that there was no otherfissioning strategy for the codes in our exper-
imental suite that would result in more energy savings.

While it is possible to develop a loopfissioning strategy that targets the en-
tire procedure (by taking into account the inter-nest interactions), in this study,
we have just focused on the most energy consuming nest (calleddominating
nest) from each benchmark, and applied the loopfissioning algorithm only to
that nest. This approach is expected to improve the overall energy consump-
tion, possibly at the expense of an increase in energy consumption of the other
nested loops, because in all the codes that we experimented with, there were
only one or two dominating nests. If there are two nested loops that consume
exactly the same (maximum) amount of energy, we designate thefirst one (in
the textual program order) as the dominating nest.

Figure 10.4 shows the percentage decrease in energy (when theentire appli-
cation is considered) brought about by eachfissioning alternative over mode
control plus clustering. It should be noted that we consider only the codes
that can benefit from loopfission, and different most costly nests (of different
codes) have different number offissioning options (alternatives). The main
reason that prevented the application of loopfission to other codes was the fact
that the dominating nests in these codes contain only a single instruction; so,
there was only one option, which is the original nest. We also observed that
applying loopfission to thesecond dominating nest (instead of the dominating
nest) in general increased the overall energy consumption as the array layouts
suggested by the second most costly nest are usually not suitable for the most
costly nest.

Consequently, we selected the most effective alternative for each bench-
mark, and applied it. The average improvement (%) over all benchmarks
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INPUT: A perfect loop nest containing K instructions
OUTPUT:

An energy-optimized loop-fissioned code
(B contains the number that identifies the loop fissioned
version with minimum energy)

Begin
Let Emin be the least computed energy consumed

by the loop nest
Let B be the number of the more energy saving option.
Emin The energy consumed by the original loop nest

(without fission)
B 0
For i = 1 to K - 1

Create two loop nests instead of the original loop nest
� the first containing the first i instructions and
the second the remaining K� i instructions

Compute the energy Ei consumed by this new program.
If Emin > Ei

Emin Ei

B i
EndIf

EndFor
Create K loop nests, instead of the original loop nest
� each one contains one instruction of the original
nested loop

Compute the energy EK for this new program
If Emin > EK

Emin EK

B K
EndIf

End

Figure 10.3. An Algorithm that Improves Memory Energy Consumption using Loop Fission

(that are amenable to loopfission) was around 55.5%. Since the array allo-
cation considers only the dominating nest, there might be a negative impact
(energy-wise) on other nests if the best layout strategy for the most costly nest
is not suitable for the other nests. Figure 10.5 shows the energy impact of this
dominating nest-centric optimization on other nests. We observe that different
benchmarks behave quite differently. For example, ineflux, all the other nests
(in addition to the dominating nest) show energy improvement. Forvpenta,
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Benchmark Alternative Fissioning Strategies for the Dominating Nest (%)
#1 #2 #3 #4 #5 #6 #7 #8 #9

adi 47.0 47.0 61.2
dtdtz 48.5 48.5 48.5 48.5
eflux 47.0 45.2 43.3 66.9
matvec 49.8 33.2 16.6 58.2
tomcatv 49.5
vpenta 8.2 23.5 16.6 24.9 18.0 16.6 20.7 8.2 48.4

Figure 10.4. Percentage Energy Improvements due to Different Loop Fission Alternatives

Benchmark Loop Nests (%)
#0 #1 #2 #3 #4 #5 #6 #7 #8

adi 61.2 0.0
dtdtz 48.5 0.0 -33.0
eflux 47.0 19.9 24.7 19.9 19.9 25.0
matvec 58.2 -48.1 0.0 0.0
tomcatv 49.5 0.0 0.0 0.0 -1.5 0.0 16.3 0.0 0.0
vpenta -33.2 -39.8 0.0 48.4 -33.3 -33.3 -0.3 25.0

Figure 10.5. Percentage Variations in Energy of All Nested Loops in the Benchmarks

on the other hand, the second nest experiences a 39.8% increase in energy con-
sumption. Overall, the nestsother than the dominating ones show only a 2.8%
increase in energy. Thus, we conclude that focusing only on the dominating
nest and performing an array allocation based on that works well with loop
fission.

4.4 Improving E�ectiveness of Power Mode
Control Mechanisms Using Data
Transformations

While loop transformations can be used to improve the effectiveness of low
power memory mode operation as shown in previous subsection, they can be
problematic to apply in certain cases. For example, unlike other languages
such as C or Fortran, changing access pattern of Java codes is more problem-
atic as the language imposes a precise exception requirement. That is, it is not
safe to change the execution order of loop iterations unless one is certain that
the original occurrence order of exceptions will be preserved after this mod-
ification. This is the primary obstacle before any transformational approach
based on loop transformations and instigated some efforts in eliminating array
bounds checking and in developing constrained loop optimizations [7]. Data
transformations on the other hand are independent of access pattern and can-
not modify/constrain occurrence order of exceptions. In the following two
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subsections, we summarize the anticipated impact of using two data optimiza-
tion approaches on energy consumption. The details of the techniques can be
found in [1] and are omitted here for lack of space.

4.4.1 Data Layout Transformations. The data layout trans-
formations can be used to reduce the energy savings of partitioned memory
modules with low power modes. By changing the storage order and improv-
ing the spatial locality of the arrays using the transforms, one can expect to
increase the average inter-access times between two memory operations to the
same module. The increased inter-access times would provide an opportunity
for operating in a lower power mode for a longer time. Note that the increased
inter-access time could be due to two different reasons. First, improved cache
behavior can increase the time between two accesses to memory. Next, the
memory accesses can be confined to a particular memory module for a pe-
riod of time allowing the other modules to operate in a lower power mode
for extended periods of time. For example, consider storing a large array that
spans across different modules. If it is stored in row-major form and accessed
in column-major form, successive references may access different modules.
However, if it is stored and accessed in column-major form, successive ac-
cesses will be confined to the same module except at module boundaries.

4.4.2 Array Interleaving. In this section, we discuss a data
space transformation technique, array interleaving, that transforms a number
of array variables simultaneously. It achieves this by interleaving the memory
allocation for the elements of a set of arrays in a common heap space. This can
be used to eliminate inter-variable conflict misses, that is, the conflict misses
that are due to different variables. In our partitioned memory architecture, such
an optimization can also maximize opportunities for placing memory modules
into a low power operating mode.

For the partitioned-memory architecture, only those memory modules con-
taining the parts of the arrays currently being accessed need to be active. If
we use the array interleaving strategy, it would co-locate portions of different
arrays which are accessed at the same time. This can provide an opportunity
for transitioning more modules into a lower power mode. For instance, let us
assume that the values of elements from one arrayU are copied to the elements
of another arrayV and that the two arrays are allocated in two different memory
modules. When copying the elements of one array to another, we need to keep
both modules active for the entire duration of loop execution. After interleav-
ing, the corresponding rows of each array are co-located. Hence, half of each
array spans each module. Thus, during thefirst half of the loop execution one
of the modules can be transitioned into a lower power mode and in the second
half of the loop execution the other module can operate in a lower power mode.
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Through experimentation on a set of Java applications [1], it is observed
that using layout transformation provides an average of 9.68% energy saving
in addition to the savings provided by mode control [1]. Similarly, the ar-
ray interleaving optimization provides an average of 14.96% additional energy
savings.

5. Summary

In this chapter, we have shown that software optimizations play a critical
role in determining the system energy. These optimizations can be applied at
different stages of the compiler, either at the high-level or the low-level. Fur-
ther, we demonstrated that optimizing for energy and performance are not the
same. The optimizations proposed also stress the importance of increasing the
synergy between the underlying low power hardware and the software execut-
ing on it in order to gain significant energy savings. While most of this chapter
has focussed on dynamic power consumption, it will be vital in future to focus
on leakage power management. Also, it would be important to dynamically
generate code that adapts to changing energy constraints in mobile environ-
ments.
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Notes

1. Note that, even if there is no edge between two instructions, we will still have a weight between
them, as these two instructions can be executed in thefinal schedule one after another.
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