
Jorvik. (c) Guillem Bernat. Univ. York 1

1

JorvikJorvikJorvikJorvik:

Guillem Bernat
Real-Time Systems Research Group

Department of Computer Science, University of York. 2002
http://www.cs.york.ac.uk/rts

A Framework for Flexible
Real-Time Systems

3

Contents

1- Flexible real-time systems (FRTS)
What is the problem?

Assumptions

Requirements

2- Process model
Model of the system

Simplifying assumptions (too simplistic?)

3- Jorvik

4- Implementation

5- Open issues

4

1F lexible
Real-Time
Systems

5

Hard real-time systems

• Real-time system: time is important
• All deadlines have to be guaranteed

• System is predictable => analysable
for the worst case behaviour

• Analysis : WCET + Schedulability tests

• But:
– System is rigid and pessimistic, and therefore

system is overspecified
– Not adequate model for the requirements of

future real-time systems

6

Flexible real-time systems

• Only a subset of the system is really hard:
– firm, soft,
– weakly-hard: i.e. meet n out of m consecutive

invocations.
– value/utility functions

• Some unpredictable or unbounded components
• Dynamic/changing environments. Modes of

operation.
• Not enough time to finish all components.
• Adaptiveness: Trade-off between quality of the

result and the time at which it is made available.
• Guarantee hard deadlines + maximise system

utility (optimally?)



Jorvik. (c) Guillem Bernat. Univ. York 2

7

Example: mobile robot

Hard Collision Planning

8

Example 2: Robocup

• Robots
– Small, limited bandwidth

• Central station
– COMM: Broadcasts commands to team of robots

– HI: High-level strategic reasoning
• Strategy identification
• Machine learning approaches

– MI: Mid-level tactic planning
• Path planning

• Tactic manoeuvre
• Vision subsystem

– LO: Low-level reactive behaviour

– RTDB: Real-time database management

• Most levels are highly computationally expensive
– Cycle times, from 30ms to 5 secs

– Ci is useless, it is to pessimistic

9

Robocup

10

11

Summary of requirements

• System decomposed in two broad subsystems A,B
(that interact)
– R1: Guarantee that all tasks of subsystem A always

meets their deadlines
– R2: Desirable that tasks of subsytem B meet their

deadlines, but

• Load A + B exceeds computing power

• Q: What problems will be faced?
• Q: How to structure the system to satisfy these

requirements?
• Q: How to evaluate how good the final solution is?
• ...

12

Meaning of flexible

• Resource adaptiveness (CPU/Network).

• Periods of transient overload.
– Graceful degradation on the quality of the results,
– Guaranteed minimum level of service, ...
– and on time.

• Adjusting load by not running some invocations
– Firm tasks skipped/aborted
– Soft tasks finish late
– Weakly-hard constraints. A minimum number of

invocations guaranteed to finish on time



Jorvik. (c) Guillem Bernat. Univ. York 3

13

Issues

• Design
– Design with flexible timing constraints in mind
– Design using adaptive models of computation

– Assigning Value/value functions

– Modeling systems that may miss deadlines

• Architecture
– Process model

• functions to task decomposition

– Scheduling algorithms
• Hard / optimal usage of slack time

• Analysis techniques
– Absolute guarantees for hard components

– Achievable levels of service

– Probabilistic models

• Implementation models
– Low overheads

14

Dimensioning RT systems

• Dimensioning a system for the worst case is
very pessimistic (expensive)

• Find the smallest/slowest/cheapest hardware
that provides the desired service

• Tasks do not run “always” for their WCET

• Task with D= 80

• Processor A: Ri= 97

• But it may only miss it 11
times every 300 invocations
(in the worst case)

15

Applications of flexible RTS
• Two objectives:

– Maximise resource usage
– Guaranteed level of service

• Guaranteed result with minimum cost

• Scopes
– Real-Time Artificial Intelligence
– Embedded systems (big numbers)

• Home appliances (i.e. DVD players, autonomous lawn
mowers, autonomous vacuum cleaners,...),

• X-by-wire,

– Embedded Systems (limited resources)
• Satellites,

• Pre-selected hardware

– Guaranteed minimum levels of QoS.
• Video decoders for video on demand...

– Flexible real-time networking. Video server.
16

2Process
Model

17

Process model

• System decomposed as a set of concurrent
tasks/transactions
– Periodic, non-periodic: repeating and isolated
– Temporal constraints: hard, firm, soft, weakly-hard,
– Period (T),
– Deadline (D),
– Execution time:

• Worst-case execution time (C)

• Execution profile

• Probabilistic values of the above

– Value (V)

18

On computation times

• Main assumption on most (all?) scheduling work:
– Ci is known
– Ci is accurate
– Tasks run for Ci time units every time

• Significant points in time:
– Average C
– p-percentile C
– Maximum measured C
– Maximum C (non computable)
– WCET

• Low correlation on WCET execution times
• Ineffective model for next generation RTS

– Not suitable for data dependent code: AI, vision, ...



Jorvik. (c) Guillem Bernat. Univ. York 4

19

On computation times (2)

• WCET is "very" pessimistic
– Implicit code structure

• EX: long if branch almost never taken

– Worst case data dependencies
• EX: maximum data set size

– Processor features
• Determining exact impact is an NP-hard problem

• Impact of CPU features considered "almost" separately

• Implications
– Huge amounts of slack (gain time) may be actually

available due to the pessimism of Ci only.
– Research on WCET

• Algebraic/symbolic WCET
• Probabilistic WCET

• Execution profiles
20

On Value

• Single or multi criteria
– value is multidimensional <v1,v2,v3,...>

– But generally captured in a single value (easier)

• Where does value come from?
– Small ranges of values

– comparable
• which operations are allowed
• precision?

• Traditional approach:
– Minimise average response time of soft aperiodics (best effort?)

– Maximise value in total.

• Jorvik approach. Time window:
– Guaranteed minimum value in every window of time "w".

– Provide the same metric over a window of time.

21

Adaptive components
• Imprecise computation model:

– Anytime algorithms
– Multiple versions
– ...

• The HFH model
– HF*H: general model
– Weakly hard version

22

Other Models

• Generic transaction
– Start of transaction is hard?
– Hard, non-hard components
– Non-hard should be also skippable
– Fork-Join operators
– Cumulative errors

• Multiprocessor
– Scheduling 2 resources

• CPUs

• Network (s)

– Global vs. local scheduling

• Optimal solutions are mostly NP-Hard

23

Summary

• Two objectives
– Guaranteed minimum behaviour

• Meet all hard deadlines

• Guarantee minimum value

– Use extra time "effectively"

• Structure solution in two levels
– Level 1: guaranteed level

• Predictable

• Based on pessimistic assumptions

• Pessimistic

– Level 2: effective use of available resources
• Due to gain time and slack time

• Probabilistic / average behaviour

• Non-optimal solutions
24

3Jorvik


