speed adjustment in frame-based systems

Static speed adjustment
Assumption: all tasks have the same deadline.

CPU speed WCET deadline

Select the speed based on worst-case execution time,WCET,
and deadline

Dynamic Speed adjustment techniques
for linear code

Remaining WCET 1

time

FO

Remaining time |

time

Speed adjustment based on remaining WCET

Note: atask very rarely consumes its estimated worst case execution time.

Dynamic Speed adjustment techniques
for linear code

time

W W
O

Speed adjustment based on remaining WCET

Dynamic Speed adjustment techniques
for linear code

time

time

Speed adjustment based on remaining WCET

time

Greedy speed adjustment:
Give reclaimed slack to next task rather than all future tasks

Dynamic Speed adjustment techniques
for linear code

4 WCET X
time
Remaining time -
:Remaining av. ex. time .

Sax i
time
time

—>
Speed adjustment based on
remaining aver age execution time
An alternate point of view
4 WCET
time

Reclaimed stolen
slack slack

WCE time

Dynamic Speed adjustment techniques
for non-linear code

min average

Ataw

* Remaining WCET is based on the longest path
» Remaining average case execution time is based on
the branching probabilities (from trace information).

2. Periodic, non-frame-based systems

» Eachtask hasaWCET, C; and aperiod T,
= Earliest Deadline First (EDF) scheduling

= Static speed adjustment: If utilization U = Z T < 1,
then we can reduce the speed by a factor of U, and still
guarantee that deadlines are met.

| I I]

Note: Average utilization, U,, can be much lessthan U

Greedy dynamic speed adjustment

S

3\

p—

38

| []]
= Giving reclaimed dack to the next ready task is not always a
correct scheme

B

LS.

P

(@)

O
=

| qﬁ‘ (I (i

= Theorem: A reclaimed slack has to be associated with a deadline
and can be given safely to atask with an earlier or equal deadline.

aggressive dynamic speed adjustment

= Theorem: if tasks], ..., k areready and will complete before the
next task arrival, then we can swap the time allocation of the k
tasks. That is we can add stolen slack to the reclaimed slack

w |
B |
| |

= Experimental rule: Do not be very aggressive and reduce the
speed of atask below a certain speed (the optimal speed
determined by U

av)

Speed adjustment in Multi-processors

1. the case of independent tasks on two processors

Canonical execution ==> al tasks consume WCET

No speed
Deadline =
12 time
Static speed Pl _I
management
T o 6

Dynamic speed adjustment

Non canonical execution ==> tasks consume ACET

If we select the initial speed based on WCET, can we do
dynamic speed adjustment and still meet the deadline?

I
Greedy slack P1 - |

Reclamation -
e e I e
miss

i 12 time

Slack sharing Pl -_ meets

(SS) deadline
P2 -

Dynamic speed adjustment (2 processors)

2. dependent tasks -\/-
e —

Uselist scheduling

Canonical

execution P2 6

I 12 time
I i
» Assuming that we adjust the speed statically such that
canonical execution meets the deadline.

» Can wereclaim unused slack dynamically and still meet the
deadline?

Dynamic speed adjustment (2 processors)

2. dependent tasks
4 |- —

Uselist scheduling 31

L6

Ready Q e
Canonical P1
execution -

” & 0 time

12

Ready Q |
Exeoutionid |
Execution with Pl deadline
Slack sharing P2 |1] 6 miss

m time
I 12 >

Dynamic speed adjustment (2 processors)

Solution: Use await_Q to -\/-

enforce canonical order in

s S
warQ [4) [EH IEN

Ready Q

12 time

>

* A task is put in Wait_Q when its last predecessor starts execution
* Tasks are ordered in Wait_Q by their expected start time under WCET
* Only the head of the Wait_Q can moveto the Ready Q

Dynamic speed adjustment (2 processors)

Solution: Use await_Q to -\/-
enfor ce canonical order in

Ready Q 31

12 time

>

* A task is put in Wait_Q when its last predecessor starts execution
 Tasks are ordered in Wait_Q by their expected start time under WCET
* Only the head of the Wait_Q can move to the Ready Q

Dynamic speed adjustment (2 processors)

Solution: Useawait_Q to
enforce canonical order in
Ready Q

meets
deadline
12 time

>

* A task is put in Wait_Q when its last predecessor starts execution
* Tasks are ordered in Wait_Q by their expected start time under WCET
* Only the head of the Wait_Q can moveto the Ready Q

Theoretical results

For independent tasks, if canonical execution finishes at time T, then
non-canonical execution with slack sharing finishes at or before time
T.

e

For dependent tasks, if canonical execution finishes at time T, then,
non-canonical execution with slack sharing and a wait queue
finishes at or beforetime T.

P

| mplication:

« Can optimize energy based on WCET (static speed adjustment)

» At run time, can use reclaimed slack to further reduce energy
(dynamic speed adjustment), while still guaranteeing deadlines.

4. Static optimization when different
tasks consume different power

. . o Start time
Assuming that the power consumption

functionsareidentical for all tasks. Task 1

Then to minimize thetotal energy, all
tasks have to execute at the same speed.

Task 2
If, however, the power functions, P,(S), are
different for tasksi = 1, ..., n,

Then using the same speed for all tasks

does not minimize energy consumption. Task 3

L | deadline

Let C, = number of cycles needed to complete task i

Minimizing energy consumption

Example: ThreetaskswithC,= C, = C,

If P(S =28, fortaski ,
then, energy consumed by task i iISE; =g,/ t,

Start time

If a,=a, = a,, _“
L Task|
then t, = t, = t; minimizestotal energy L[t
E —
Task D
Task|
) |3
D/3 time 1 v

deadline

Minimizing energy consumption

Example: ThreetaskswithC,= C, = C;

If P(S =a &, fortaski ,
then, energy consumed by task i iSE; =a; /

Start time

A

If a,,a, and a3' , are different

then t, = t, = t; does not minimize total energy

3

deadline
Minimizing energy consumption
Start time
Theproblemistofind S, i=1, ..., n, such that to N
n
minimize Z t P(S)
E
n
subject to Zti < D
E
and S, £ § < S D
C
Notethat t, = —-
S

» We solved this optimization problem, consequently developing
asolution for arbitrary convex power functions.

v

« Algorithm complexity: O(n?log n) deadline

Maximizing the system’s reward

General problem assumptions:
* tasks have different power/speed functions
» tasks have different rewards as functions of number of

executed cycles

1 AR
s [[

« time >

AN =R

Maximizing the system’s reward

€]

U Theorem: If power functions are all of the form ¢; s,

then reward is maximum when power is the same for all tasks

A

Power

Energy I /

Deadline I | M

! S3

@

Given the speeds, we know how to maximize
the total reward while meeting the deadline.

= o — |

“ time >

Maximizing reward for a given energy budget

The problem:
find the speeds § ,and execution times, t; , i=1, ..., n, such asto

maximize ER(Q) <:,‘Obtain best reward‘

subject to iti < D <:,‘ Time budget ‘
itipi(ti) < E <:¢ Energy budget ‘
S,

n £ S < S, ———— Limitsonspeed |
i <:¢ Limits on computation ‘

Il £ C < u

C
Notethat t, = —-
S

We solved this optimization problem analytically for specific forms of the
power functions. For arbitrary power functions, we use heuristics.

Maximizing reward for a given energy budget

1) Ignore energy and maximize reward, R, within the deadline

2) If exceed available energy;

—remove A t from atask such that decrease in Ris minimal
—use At to decrease the speed of atask, such asto maximize the
decrease in energy consumption

3) Repeat step 2 until the energy constraints are satisfied

& Iy P
oot e
T

A
=,
3
®
v

Maximizing reward for a given energy budget

Runni ng error
time

At At

—>

An iterative refinement algorithm: eror
1) Define arequired error, €
2) solve the problem with an initial At

) setAt=At/2
4) solve the problem for the new A t \\
5) find the improvement in the solution

6) if improvement larger thane , goto 3

Running time

Dual use of time slack

Slack can be used for
1) fault tolerance

- add checkpoints I

- reserve recovery time <ST—EX>
2) reduce processing speed

deadline

Dual use of time redundancy

Observation: May continue executing at
Srex after recovery.

Disadvantage: consumes more energy
when afault occurs (rare)

Advantage: recovery in an early section can
use slack created by execution
of later sectionsat S,

@D

U Motivates non-uniform checkpoints.

Non-uniform check-pointing

Can save more power by
using non-uniformly
spaced checkpoints.

Placement of checkpoints
is different from placement
of the PMPs

Optimal number of checkpoints

More checkpoints = more overhead + less recovery slack

A A p @

(D For agiven

» dack (C/D) and

« checkpoint overhead (p),

we can find the number of checkpoints
that

* minimizes energy consumption, and
* guarantee recovery and timeliness.

"

v # of caeckpoi nts

(@)

N Energy

Triple Modular Redundancy Vs. Duplex

Duplex: Compare and TMR: vote and exclude
roll-back if different results the faulty result

P : overhead of checkpoint
Load : slack in the system
TT : ratio of static/dynamic
power
p

P o

Erl\l/leng;Serzci);?eﬁt” Load=0.6
0.035! - Load=0.7 Load=0.7
Load=0.5

Duplex ismore

0.02
Energy efficient
» 7T o 7T

01 0.2

Energy efficiency of TMR V's. Duplex depends on p, 77, and load

[@m—

Including the hardware cost

Assuming the same number of processors and a given task set, to
obtain the same reliability, will it be more energy efficient to use
TMR or Duplex?

Example: 6 processors and 6 identical tasks.

IR

- the fault model,

- the energy model and

- the overheads.

- the communication cost

Reconfigurable clusters of servers

Simplex mode

® 2
®e

Reconfigure your cluster to
- achieverequired reliability O O @ @ © O Duplex mode
- minimize energy consumption O @)

- optimize performance OO0 0O TMR mode
- meet quality of service
O O O Inactive processors

OO0

Example:

« At agiven server’s speed, it is more energy efficient to activate an
additional server than to increase the speed of the active servers.

¢ At agiven server’s speed, it is more energy efficient to power down
one of the servers than to reduce the speed of the active servers

