
time

Smax

Smin

Select the speed based on worst-case execution time,WCET,
and deadline

CPU speed

time

deadline

Smax

Smin

WCET

speed adjustment in frame-based systems

Assumption: all tasks have the same deadline.

Static speed adjustment

Dynamic Speed adjustment techniques
for linear code

time

time

Remaining WCET

Remaining time

Speed adjustment based on remaining WCET

Note: a task very rarely consumes its estimated worst case execution time.

Dynamic Speed adjustment techniques
for linear code

time

time

Speed adjustment based on remaining WCET

Dynamic Speed adjustment techniques
for linear code

time

time

Speed adjustment based on remaining WCET

Greedy speed adjustment:
Give reclaimed slack to next task rather than all future tasks

time

Dynamic Speed adjustment techniques
for linear code

timeWCE WCE WCE

time

WCET

ACET

time

AV AV

Remaining av. ex. time

Speed adjustment based on
remaining average execution time

WCE WCE

Smax

Smax

Remaining time

An alternate point of view

timeWCE WCE WCE

time

WCET

ACET

time

AV

WCE WCE

WCE

Reclaimed
slack

stolen
slack

Dynamic Speed adjustment techniques
for non-linear code

• Remaining WCET is based on the longest path
• Remaining average case execution time is based on

the branching probabilities (from trace information).

At a

p3p2
p1

min average max

2. Periodic, non-frame-based systems

� Each task has a WCET, Ci and a period Ti

� Earliest Deadline First (EDF) scheduling

� Static speed adjustment: If utilization U = < 1,
then we can reduce the speed by a factor of U, and still
guarantee that deadlines are met.

∑
i

i

T

C

Smax

Note: Average utilization, Uav can be much less than U

Greedy dynamic speed adjustment

� Giving reclaimed slack to the next ready task is not always a
correct scheme

� Theorem: A reclaimed slack has to be associated with a deadline
and can be given safely to a task with an earlier or equal deadline.

co
rr

ec
t

in
c o

rr
ec

t

aggressive dynamic speed adjustment

� Theorem: if tasks 1, …, k are ready and will complete before the
next task arrival, then we can swap the time allocation of the k
tasks. That is we can add stolen slack to the reclaimed slack

� Experimental rule: Do not be very aggressive and reduce the
speed of a task below a certain speed (the optimal speed
determined by Uav)

Speed adjustment in Multi-processors

6 4 4 2

1. the case of independent tasks on two processors

Canonical execution ==> all tasks consume WCET

P1

P2

time

6

4 4

2

Deadline
12

Global queue

P1

P2 6 6

9 3Static speed
management

No speed
management

Dynamic speed adjustment

P1

P2

time12

Greedy slack
Reclamation

(GSR)

P1

P2

Slack sharing
(SS)

Non canonical execution ==> tasks consume ACET

6,5 6,69,3 3,3

If we select the initial speed based on WCET, can we do
dynamic speed adjustment and still meet the deadline?

deadline
miss

meets
deadline

2. dependent tasks

P1

P2
time12

64

3
2

6
3

2

3

Ready_Q 4 3

Use list scheduling

4

4 6 6

3

3

6

6

6 6

Canonical
execution

• Assuming that we adjust the speed statically such that
canonical execution meets the deadline.

• Can we reclaim unused slack dynamically and still meet the
deadline?

Dynamic speed adjustment (2 processors)

63

2. dependent tasks

P1

P2
time12

64

3

1

2

6
3,1

2

3

Ready_Q 4 3

4

6 6

3

6

6

P1

P2

2

Ready_Q

Use list scheduling

Canonical
execution

Non-canonical
Execution with
Slack sharing

6

time

12

6

6

4

4

3

Dynamic speed adjustment (2 processors)

6

6

deadline
miss

4 34 3

Dynamic speed adjustment (2 processors)

P1

P2
time12

64

3
2

6
3,1

Ready_Q

Wait_Q

• A task is put in Wait_Q when its last predecessor starts execution
• Tasks are ordered in Wait_Q by their expected start time under WCET
• Only the head of the Wait_Q can move to the Ready_Q

2

6

1

Solution: Use a wait_Q to
enforce canonical order in
Ready_Q

4 34

4 3

3

Dynamic speed adjustment (2 processors)

P1

P2
time12

64

3
2

6
3,1

Ready_Q

Wait_Q

• A task is put in Wait_Q when its last predecessor starts execution
• Tasks are ordered in Wait_Q by their expected start time under WCET
• Only the head of the Wait_Q can move to the Ready_Q

2

6

1

4

3

4 3

Solution: Use a wait_Q to
enforce canonical order in
Ready_Q

6

6 6

6

64 3

Dynamic speed adjustment (2 processors)

P1

P2
time12

64

3
2

6
3,1

Ready_Q

Wait_Q

• A task is put in Wait_Q when its last predecessor starts execution
• Tasks are ordered in Wait_Q by their expected start time under WCET
• Only the head of the Wait_Q can move to the Ready_Q

2

1

4 3

4

3

4 3

Solution: Use a wait_Q to
enforce canonical order in
Ready_Q

6

6

6

6

6

6

meets
deadline

Theoretical results

For independent tasks, if canonical execution finishes at time T, then
non-canonical execution with slack sharing finishes at or before time
T.

For dependent tasks, if canonical execution finishes at time T, then,
non-canonical execution with slack sharing and a wait queue
finishes at or before time T.

• Can optimize energy based on WCET (static speed adjustment)
• At run time, can use reclaimed slack to further reduce energy

(dynamic speed adjustment), while still guaranteeing deadlines.

Implication:

4. Static optimization when different
tasks consume different power

Start time

deadline

Assuming that the power consumption
functions are identical for all tasks. Task 1

Task 2

Task 3

Then to minimize the total energy, all
tasks have to execute at the same speed.

If, however, the power functions, Pi(S), are
different for tasks i = 1, … , n,

Then using the same speed for all tasks
does not minimize energy consumption.

Let Ci = number of cycles needed to complete task i

Example:

Start time

deadline

Task
1

Three tasks with C1 = C2 = C3

If Pi(S) = ai S2 , for task i ,
then, energy consumed by task i is Ei = ai / ti

.

D

timeD/3

E

Task
2

Task
3

t1

t2

If a1 = a2 = a3 ,

then t1 = t2 = t3 minimizes total energy

t3

Minimizing energy consumption

Example:

Start time

deadline

Three tasks with C1 = C2 = C3

If Pi(S) = ai S2 , for task i ,
then, energy consumed by task i is Ei = ai / ti

.

time

E

D/3

D

If a1 , a2 and a3 , are different

then t1 = t2 = t3 does not minimize total energy
t1

t2

t3

Minimizing energy consumption

Minimizing energy consumption

Start time

deadline

The problem is to find Si , i=1, … , n, such that to

maxmin

n

1i

1

and

subject to

)(minimize

SSS

Dt

SPt

i

i

n

i
iii

≤≤

≤∑

∑

=

=

Note that
i

i
i S

C
t =

• We solved this optimization problem, consequently developing
a solution for arbitrary convex power functions.

• Algorithm complexity: O(n2 log n)

D

Maximizing the system’s reward

C1 C2 C3

General problem assumptions:
• tasks have different power/speed functions
• tasks have different rewards as functions of number of

executed cycles

time

Speed
(S)

C1

Reward

C2 C3

S1

Power

S2 S3

Theorem: If power functions are all quadratic or cubic in S,

Maximizing the system’s reward

S1

Power

S2 S3

Theorem: If power functions are all of the form αi S ,
then reward is maximum when power is the same for all tasks

Energy
Deadline

C1
C2 C3

time

Speed

Given the speeds, we know how to maximize
the total reward while meeting the deadline.

p

Maximizing reward for a given energy budget

The problem:
find the speeds Si ,and execution times, ti , i=1, … , n, such as to

iii

i

iii

i

n

i
ii

uCl

SSS

EtPt

Dt

CR

≤≤
≤≤

≤

≤

∑

∑

∑

=

=

=

maxmin

n

1i

n

1i

1

)(

subject to

)(maximize

Note that
i

i
i S

C
t =

We solved this optimization problem analytically for specific forms of the
power functions. For arbitrary power functions, we use heuristics.

Time budget

Energy budget

Limits on speed

Limits on computation

Obtain best reward

1) Ignore energy and maximize reward, R, within the deadline

2) If exceed available energy;

– remove ∆ t from a task such that decrease in R is minimal
– use ∆ t to decrease the speed of a task, such as to maximize the

decrease in energy consumption

Maximizing reward for a given energy budget

3) Repeat step 2 until the energy constraints are satisfied

time

Speed
∆ t

∆ t

Running
time

error

∆ t∆ t

What value should be used for ∆ t ?

An iterative refinement algorithm:
1) Define a required error, ε
2) solve the problem with an initial ∆ t
3) set ∆ t = ∆ t / 2
4) solve the problem for the new ∆ t
5) find the improvement in the solution
6) if improvement larger than ε , go to 3

error

Running time

Maximizing reward for a given energy budget

Dual use of time slack

deadline

Slack can be used for

1) fault tolerance

- add checkpoints

- reserve recovery time

2) reduce processing speed

Smax

Dual use of time redundancy

Observation: May continue executing at
Smax after recovery.

Advantage: recovery in an early section can
use slack created by execution
of later sections at Smax

Disadvantage: consumes more energy
when a fault occurs (rare)

Motivates non-uniform checkpoints.

Non-uniform check-pointing

Can save more power by
using non-uniformly
spaced checkpoints.

Placement of checkpoints
is different from placement

of the PMPs

More checkpoints = more overhead + less recovery slack

D

C

ρ

Optimal number of checkpoints

For a given
• slack (C/D) and
• checkpoint overhead (ρ),
we can find the number of checkpoints
that
• minimizes energy consumption, and
• guarantee recovery and timeliness.

of checkpoints

Energy

Triple Modular Redundancy Vs. Duplex

TMR: vote and exclude
the faulty result

Duplex: Compare and
roll-back if different results

Load=0.7

ρ

Load=0.5

Load=0.6

Energy efficiency of TMR Vs. Duplex depends on ρ, π, and load

Duplex is more
Energy efficient

TMR is more
Energy efficient

0.02

0.035
Load=0.7

π π

ρ

π

ρ

Load

0.1 0.2

: overhead of checkpoint

: ratio of static/dynamic
power

: slack in the system

Including the hardware cost

Assuming the same number of processors and a given task set, to
obtain the same reliability, will it be more energy efficient to use
TMR or Duplex?

Example: 6 processors and 6 identical tasks.

Need to look at
- the fault model,
- the energy model and
- the overheads.
- the communication cost

Reconfigurable clusters of servers

Simplex mode

Duplex mode

TMR mode

Inactive processors

Reconfigure your cluster to
- achieve required reliability
- minimize energy consumption
- optimize performance
- meet quality of service

Example:
• At a given server’s speed, it is more energy efficient to activate an

additional server than to increase the speed of the active servers.
• At a given server’s speed, it is more energy efficient to power down

one of the servers than to reduce the speed of the active servers

