
U. Pitt – CS 3530 1

Scheduling a-periodic tasks with periodic tasks
(a-periodic servers)

• Execute the periodic tasks according to your scheduling algorithm
• When an a-periodic task arrives, it is put in an “a-periodic tasks queue”
• Have a server whose job is to execute tasks from the a-periodic queue

•Background server: executes only when the periodic task queue is empty

•Polling server: a task, Js , with a maximum capacity (execution time) cs ,
and period Ts . The capacity is replenished at the beginning of every Ts .
If the capacity is not used when the server is scheduled to run, it is
wasted.

•Deferrable server: same as polling server, except that when there are no
a-periodic tasks to run by the server when it is scheduled to run, a
periodic task runs and the unused capacity of the server is deferred to be
used at a later time within the current period.

U. Pitt – CS 3530 2

a-periodic servers
(feasibility tests)

• Background server: make sure that the periodic tasks, J1 , … , Jn , meet their
deadlines. The a-periodic tasks are served on a best-effort basis.

• Polling server: make sure that the periodic tasks, J1 , … , Jn , and Js , meet
their deadlines. The a-periodic tasks are served at a rate of cs time units every
Ts time units.

• Deferrable server: interferes with the regular schedule (say RMS) because the
feasibility test assumes that a task runs when it is scheduled. A given test has
been developed assuming RMS scheduling and assuming that the server has
the highest priority (the shortest period).













−





+

++≤∑
=

1
12

2
/1

1

n

s

s
s

n

i
i U

U
nUc

U. Pitt – CS 3530 3

The priority inversion phenomenon in RMS

Assuming that tasks are ordered by priorities and that both Ji and Jk use
some shared resource, R (ex. use semaphores to execute critical sections).

Acquire R

Jk

Ji

Wants to use R

releases R

uses R

Jk

Ji

Jr

• If k > i and Jk acquires R before Ji

• Then Ji preempt Jk and start execution
• Then Ji request R
• Ji blocks (because of mutual exclusion)
• Jk start execution although it has lower

priority than Ji .
• Ji can execute only if Jk use releases R
• Hence, Ji may miss its deadline.

• The issue is aggravated if some other
task Jr , i < r < k, preempt Jk thus
delaying Ji further.

U. Pitt – CS 3530 4

The priority inheritance protocol

If i < k , then when Ji is blocked because of a resource R held by Jk ,

Jk

Ji

Jr

• It transfer its priority to Jk ,
• Jk runs at the priority of Ji until it releases

R (inherit the priority)
• when Jk releases R, it returns to its own

priority.
• A task that inherit multiple priorities, runs

at the highest priority and when it releases a
resource, it only relinquishes that priority

• Priority inheritance is transitive. That is, If Jk inherits a priority from Ji ,
and then is blocked because of a resource help by Ju , then Ju inherits the
priority of Ji .

A job J can be blocked for at most min(n,m) critical sections,
where n is the number of lower priority jobs that could block J
and m is the number of distinct semaphores that could block J

U. Pitt – CS 3530 5

Schedulability of the priority inheritance protocol

Add a blocking factor to the RMS analysis. Let Bi be the maximum
blocking that Ji can experience.

• For each i, Ji will meet its deadline if ()12 /1

1

−≤+∑
=

i

i

i
i

k k

k i
T

B

T

c

• May use the time domain analysis (or response time analysis, after
adding the blocking time. Specifically, the response time Ri for Ji should
be less than Ti , where Ri is obtained from

i

i

k
k

k

i
ii Rc

T

R
Bc =








++ ∑

−

=

1

1

A priority ceiling protocol limits Bi to one critical section by
• assigning a ceiling to each semaphore guarding a critical section (ceiling

= highest priority of any task that can acquire the semaphore), and
• not allowing a job to acquire a semaphore at a time t unless its priority is

higher than the ceilings of all the semaphores active at t.

U. Pitt – CS 3530 6

Dealing with overload
• Worst case execution is very pessimistic
• May accept more tasks than what the system can guarantee, and then deal

with the problem when it occurs

• Assign a value to each task, and when you detect an overload, drop the
task with the least values, or

• Use a scheduler which maximizes the total value of the system.

• Use a scheduler that guarantees that at most m out of every k instances of
a task will miss the deadlines. Each task may have a different (m,k).

• Trade precision for timeliness. In some applications, approximate but
timely result may be acceptable (multimedia, image processing, real-time
decision making …). This model is called the imprecise computation
model.

• Have multiple versions of each task with different precisions and
computation requirements

U. Pitt – CS 3530 7

Each task, Ti ,is divided to:
• A mandatory part, Mi , which should execute before the deadline
• An optional part, Oi, which may or may not execute, and may be

interrupted.
• Each optional part carries a reward if it executes before the deadline

• Traditional worst-case execution time: ci = mi + oi

• Two task models can be considered

– Independent tasks

– Chains (a restricted form of dependent tasks)

The imprecise computation model

M1 M2 M3O1 O2 O3

M2 M1 O2 O1 M3 O3

In either cases, the optional part should execute after the mandatory part.

U. Pitt – CS 3530 8

Timing Constraints

Frame-based systems

With single deadlines

Identical ready times

Arbitrary ready times
and deadlines

M1 M2 O1 O2

r d2

M1 M2 O1 O2

r d

M1 M2 O2 O1

r1 d1

d1

d2r2

Periodic tasks

Aim: Produce a schedule with maximum total reward.

U. Pitt – CS 3530 9

Reward Functions

Example: R1 = 5 t , R2 = 3 t , o1 = o2 = 4 , d1 = d2 = 14.

0 4 8 12 14

M1 M2 O1 O2 Reward = 26

Ri(ti)

ti

• A non-decreasing reward function is
associated with the optional execution,
quantifying the refinement.

• most commonly used functions are linear or
concave

• May have a step function (hard to analyze)
Ri(ti)

ti

U. Pitt – CS 3530 10

Maximizing the total reward Reward

• Assume n aperiodic tasks with zero ready times and single deadline, d,
(frame based system). Hence, the problem is to find the optional execution
times, , t1, …, , tn, such that to maximize

min

ii

n

i
i

i
i

i

n

i
i

ot

mdt

tR

≤≤

−≤ ∑∑

∑

==

=

0and

subject to

)(maximize

1

n

1

1

• The optimization problem without the upper and lower bounds on ti

can be easily solved using Lagrange multiplier techniques. The
addition of the bound complicated the problem slightly.

• In his Ph.D. dissertation, Hakan Aydin solved the problem of
maximizing the reward for periodic tasks.

