Scheduling a-periodic tasks with periodic tasks
(a-periodic servers)

 Execute the periodic tasks according to your scheduling algorithm
» When an a-periodic task arrives, it is put in an “a-periodic tasks queue”
» Have aserver whose job is to execute tasks from the a-periodic queue

 Background server: executes only when the periodic task queue is empty

*Polling server: atask, J,, with amaximum capacity (execution time) c,,
and period T, . The capacity is replenished at the beginning of every T,.
If the capacity is not used when the server is scheduled to run, it is
wasted.

*Deferrable server: same as polling server, except that when there are no
a-periodic tasks to run by the server when it is scheduled to run, a
periodic task runs and the unused capacity of the server is deferred to be
used at alater time within the current period.

U. Pitt— CS 3530 1

a-periodic servers
(feasibility tests)

» Background server: make sure that the periodic tasks, J; , ..., J,, , meet their
deadlines. The a-periodic tasks are served on a best-effort basis.

* Poalling server: make sure that the periodic tasks, J, , ..., J,, and J;, meet
their deadlines. The a-periodic tasks are served at arate of c, time units every

T, time units.

» Deferrable server: interferes with the regular schedule (say RMS) because the
feasibility test assumesthat atask runswhen it is scheduled. A given test has
been developed assuming RM S scheduling and assuming that the server has
the highest priority (the shortest period).

n /n
¢ <U_+n U, +2 —lH
IZ i s s+l E

U. Pitt— CS 3530 2

The priority inversion phenomenon in RMS

Assuming that tasks are ordered by priorities and that both J; and J, use
some shared resource, R (ex. use semaphores to execute critical sections).

* If k> i and J, acquires R before J;
* Then J, preempt J, and start execution WantstouseR UsesR

* ThenJ, request R '_¢ L‘ :

* J; blocks (because of mutual exclusion) J
* Ji start execution although it has lower 3 =]
priority than J; .

 J, canexecuteonly if J, use releasesR Acquire R releasesR
* Hence, J, may missits deadline.
J, I—{ LH
» Theissueisaggravated if some other
task J, ,i < r <k, preempt J, thus J o
delaying J;, further.

I T — j —J
U. Pitt— CS 3530 3

The priority inheritance protocol

Ifi <k ,thenwhenJ; isblocked because of aresource Rheld by J,,

* It transfer itspriority to J, ,

* J, runsat the priority of J, until it releases
R (inherit the priority) J 'J L' 1
» when J, releases R, it returnsto its own |
priority. . ——
* A task that inherit multiple priorities, runs 5 k= 1
at the highest priority and when it releasesa % 4 t

resource, it only relinquishes that priority

* Priority inheritance istransitive. That is, If J, inheritsapriority from J, ,
and then is blocked because of aresource help by J, , then J, inheritsthe
priority of J, .

A job J can be blocked for at most min(n,m) critical sections,
where n is the number of lower priority jobs that could block J
and misthe number of distinct semaphores that could block J

U. Pitt— CS 3530 4

Schedulability of the priority inheritance protocol

Add ablocking factor to the RMS analysis. Let B; be the maximum
blocking that J, can experience.

i B .(.ui
» For eachi, J, will meet its deadline if ZT&+?ISI(21“ —1)
=1 Tk i

* May use the time domain analysis (or response time analysis, after
adding the blocking time. Specifically, the responsetime R, for J; should
belessthan T, , where R, is obtained from

i1
(RO _

G+B+YEg 6 =
;Dkg “ R

A priority ceiling protocol limits B, to one critical section by

* assigning a ceiling to each semaphore guarding a critical section (ceiling
= highest priority of any task that can acquire the semaphore), and

* not allowing ajob to acquire a semaphore at atimet unlessits priority is
higher than the ceilings of all the semaphores active at t.

U. Pitt— CS 3530 5

Dealing with overload

» Worst case execution isvery pessimistic
» May accept more tasks than what the system can guarantee, and then deal
with the problem when it occurs

» Assign avalue to each task, and when you detect an overload, drop the
task with the least values, or
 Use a scheduler which maximizes the total value of the system.

» Use ascheduler that guarantees that at most m out of every k instances of
atask will missthe deadlines. Each task may have a different (m,k).

* Trade precision for timeliness. In some applications, approximate but
timely result may be acceptable (multimedia, image processing, real-time
decision making ...). Thismodel is called the imprecise computation
model.

» Have multiple versions of each task with different precisions and
computation requirements

U. Pitt— CS 3530 6

The imprecise computation model

Each task, T; ,is divided to:
* A mandatory part, M;, which should execute before the deadline
* Anoptiona part, O,, which may or may not execute, and may be
interrupted.
 Each optional part carries areward if it executes before the deadline

* Traditional worst-case execution time: ¢, = m + 0,
+ Two task models can be considered
— Independent tasks

NI o. o ¥l o.

— Chains (arestricted form of dependent tasks)

°,

In either cases, the optional part should execute after the mandatory part.

U. Pitt —CS 3530 7

Timing Constraints

rebeomes e ’
o) o)
With single deadlines ! 2
A
Y yd; 0,
Identical ready times (o} 0,

)) d, ld
Arbitrary ready times " 2 L o
and deadlines O, 0,

L = e =
Periodic tasks L L

Aim: Produce a schedule with maximum total reward.

U. Pitt —CS 3530 8

Reward Functions

* A non-decreasing reward function is
associated with the optional execution, R(t)
quantifying the refinement.

» most commonly used functions are linear or ﬁ
concave 5 t

R
« May have a step function (hard to analyze) —

Example R,=5t,R,=3t,0,=0,=4,d,=d,= 14.

M, M, | 0, | O, Rewad=26
0 4 8 12 14

U. Pitt— CS 3530 9

Maximizing the total reward Reward

» Assume n aperiodic tasks with zero ready times and single deadline, d,
(frame based system). Hence, the problem isto find the optional execution
times, , t, ..., , t,, such that to maximize

maximize i R(t)

subject to iti mirS d—im

and 0 <t < o

* The optimization problem without the upper and lower bounds on t;
can be easily solved using Lagrange multiplier techniques. The
addition of the bound complicated the problem dlightly.

* In his Ph.D. dissertation, Hakan Aydin solved the problem of
maximizing the reward for periodic tasks.

U. Pitt— CS 3530 10

