Scheduling Periodic tasks

Can apply EDF scheduling
« Example 2 tasks: (2,4) and (3,7)

e | | | | c=2,T=4

I | I_I 1 c=3,T=7

» Dynamic priority scheduling (high priority to task with earlier deadline)
* Note that we can look at each periodic task as a series of a-periodic tasks

n

The Utilization of thetask set {J;, i=1,...,n} isdefined by U = %

If deadlines are not equal to the periods, the necessary condition for the
feasibility of EDF is an open problem.

Which job missesits deadlinein case U > 1 isunpredictable.
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With EDF, al taskswill meet their deadlinesif andonly if U < 1
Proof:

» Assumethat the overflow occursat t, , B o
Let t, be the latest time before t, such that oo Ly
* the processor isfully utilized in[t, , t,] : :
« only instance with deadlinesbeforet, ~ — 1= m—t_
executesin[t; , t,] = o
If cannot find such at, , then set t, = 0. 4 b
Let C, be the computational demandin [t, , t, ]

4, -t 0 t, -t
C = Elu@. < gq = (t -t )U
‘ rlztgstzm T 0 i;n T, 20

» But an overflow impliesthat C; > (t,-t,) -- acontradictionif U < 1.
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Rate monotonic Scheduling, RMS (fixed priority)
¢ Higher priority is given to tasks with shorter periods.

I—I I—I I—I c=2,T=4

I | I_I_I 1 c=3,T=7

* If ¢, = 3.1, then ¢, will missits deadline although the utilization

is 2+ 2L whichislessthan 1.

Liuand Layland proved that RMS leads to afeasible schedul e if
Us<n(2¥n-1)

» The above bound is sufficient but not necessary

* n(2¥-1)=0.828, whenn= 2, and = In 2 = 0.69, when nisvery large.
* RMSisan optimum fixed priority assignment algorithm (if RMSfails,
all fixed priority scheduling fail).
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Derivation of the Liu and Layland “RMS” bound.

(I If atask set isfeasible when the phases are aligned, then the same
task set isfeasible if the phases are not aligned (the critical instant is
when all tasks are aligned). Hence, atask set isfeasible if the first
instant of each task finishes by its deadline.

(I1) For ntasks, find U,,, such that if atask set has a utilization less than
or equal to Uy, , then it can be feasibly scheduled by RMS. Assume that
theratio of the largest to the smallest period (T, / T, ) is no more than 2.

(1) generalize the result for aarbitrary T,/ T, ratio.
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Proof of (Il) for sets of two tasks (n=2).

Among all the feasibly scheduled task sets{J, , J,}, we want to find for any
given combination of periods, the maximum feasible utilization U, .
Find, U, , the minimum value of U, for all possible combinations of T, .

*Fix T, and consider all possiblevaluesof T, ¢, , and ¢, (relativeto T, ).

e For any T, , assuming afully utilized processor, the minimum U is T
whenc, =T,-T, (thusc,=T,— cr,andU =T,/ T, +2T,/T,-2).«—1»
«If ¢, =T,-T,- ¢, thenfor feasiility, c,= T, — 2c, and
U increases.
eIf ¢,=T,-T,+ ¢, then for feasibility, c,= T, — ¢, and
U aso increases.
* Note that we kept the processor fully utilized to obtain
an upper bound on the feasible utilization.

*Next, differentiate U w.r.t. T, and equate the result to
zeroto obtain T,/ T,= <2

*Hence, among all possible values of T, , the minimum
utilizationis 22 - 2
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Proof of (Il) for sets of n tasks.
*For givenvauesof T, , ..., T, , the upper bound, U, , on the
utilization of feasible setsis obtained when
C=T,-Ty
C,=T3-T,
Ch1= Tn - Tn—l
c,=T,-(c,+...+c,y) =2T,-T,
n-1 2
*For theabovevalues, U = Z R + ——— -
RR R
whereR =T, /T, addR, ... R, =T,/ T,
DifferentiasteU w.rt. R, , ..., R, and equate the result to zero to obtain

R =..=R =20

*Hence, among all the T'sand c’s, the minimum utilization for feasibility
is U= n(2Un-1)
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Time demand analysis
A necessary and sufficient test for RMS feasibility
*Sort thetasks J, , ..., J, by order of priorities(T,; < .... <T, )
*Task J; , will meetitsdeadlineT, , if thereisatimet earlier thanT, ,

such that ‘
i-1 Dt D

G+ 06 =t
251

* t is theresponsetime of task J, .

May iteratively find the
firstt, such that f(t) =t

*Need to only consider thetimes t where 4y
some event occurs (periods boundaries). . y=t
Co)p-mmmmm e = f(t
* Repeat the above test for each task J, . f(t) ; y=10
*What is the test complexity? fit) |-
f(to)
SR . time,
t0 tl t2 t3 .
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Deadline monotonic scheduling
Used when the deadline of task J; ,is D; whichislessthan T, .

*Use priority proportional to the deadlines rather than periods
» Deadline monatonic is optimal among fixed priority schedules
* Necessary and sufficient test is that, for every i, the value of t that satisfies

i—lDt |:|
c+ =t
26

also satisfiest < D . That isthe response time is less than the deadline.

*Can show that atask set isfeasible with DMS if Z% <n(2""-1)
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Periodic scheduling on multiprocessors

Global scheduling:

, @
One global ready queue sorted by priority

*The priority of executing tasks should be larger —
than the task at the head of the queue
«Both global RMS and EDF are very inefficient.

*Example: 2 processors, and 3 tasks; (0, €, 1- €), (0, €, 1-¢€), (0,1, 1).
« Utilization may be zero for large number of processors and very small €.

Partitioned scheduling: 4_
«Partition the tasks into separate queues (using
any bin packing scheme (first fit, best fit ,...) ‘—

*Observe the feasibility of each processor
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