
IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 12, NO. 7, JULY 2004 711

An Architecture and Compiler for Scalable
On-Chip Communication

Jian Liang, Student Member, IEEE, Andrew Laffely, Sriram Srinivasan, and Russell Tessier, Member, IEEE

Abstract—A dramatic increase in single chip capacity has led
to a revolution in on-chip integration. Design reuse and ease of im-
plementation have became important aspects of the design process.
This paper describes a new scalable single-chip communication ar-
chitecture for heterogeneous resources, adaptive system-on-a-chip
(aSOC) and supporting software for application mapping. This ar-
chitecture exhibits hardware simplicity and optimized support for
compile-time scheduled communication. To illustrate the benefits
of the architecture, four high-bandwidth signal processing appli-
cations including an MPEG-2 video encoder and a Doppler radar
processor have been mapped to a prototype aSOC device using our
design mapping technology. Through experimentation it is shown
that aSOC communication outperforms a hierarchical bus-based
system-on-chip (SoC) approach by up to a factor of five. A VLSI
implementation of the communication architecture indicates clock
rates of 400 MHz in 0.18- m technology for sustained on-chip com-
munication. In comparison to previously-published results for an
MPEG-2 decoder, our on-chip interconnect shows a runtime im-
provement of over a factor of four.

Index Terms—Communications architecture, on-chip intercon-
nect, system-on-chip (SoC).

I. INTRODUCTION

RECENT advances in VLSI transistor capacity have led to
dramatic increases in the amount of computation that can

be performed on a single chip. Current industry estimates [1]
indicate mass production of silicon devices containing over one
billion transistors by 2012. This proliferation of resources en-
ables the integration of complex system-on-a-chip (SoC) de-
signs containing a wide range of intellectual property cores.
To provide high performance, SoC integrators must consider
the design of individual intellectual property (IP) cores, their
on-chip interconnection, and application mapping approaches.
In this paper, we address the latter two design issues through the
introduction of a new on-chip communications architecture and
supporting application mapping software. Our communications
architecture is scalable to tens of cores and can be customized
on a per-application basis.

Recent studies [1] have indicated that on-chip communica-
tion has become the limiting factor in SoC performance. As
die sizes increase, the performance effect of lengthy, cross-chip
communication becomes prohibitive. Future SoCs will require

Manuscript received June 10, 2002; revised November 23, 2003. This work
was supported in part by the National Science Foundation under grants CCR-
0081405 and CCR-9988238.

J. Liang and R. Tessier are with the Department of Electrical and Computer
Engineering, University of Massachusetts, Amherst, MA 01003 USA (e-mail:
tessier@ecs.umass.edu).

A. Laffely is with the U.S. Air Force, Hanscom AFB, MA 01731 USA.
S. Srinivasan is with Advanced Micro Devices, Austin, TX, 78741 USA.
Digital Object Identifier 10.1109/TVLSI.2004.830919

Fig. 1. Adaptive system-on-a-chip (aSOC).

a communication substrate that can support a variety of diverse
IP cores. Many contemporary bus-based architectures are lim-
ited in terms of physical scope by the need for dynamic arbitra-
tion of communication resources. Significant amounts of arbi-
tration across even a small number of components can quickly
form a performance bottleneck, especially for data-intensive,
stream-based computation. This issue is made more complex by
the need to compile high-level representations of applications to
SoC environments. The heterogeneous nature of cores in terms
of clock speed, resources, and processing capability makes cost
modeling difficult. Additionally, communication modeling for
interconnection with long wires and variable arbitration proto-
cols limits performance predictability required by computation
scheduling.

Our platform for on-chip interconnect, adaptive
system-on-a-chip (aSOC), is a modular communications
architecture. As shown in Fig. 1, an aSOC device contains
a two-dimensional (2-D) mesh of computational tiles. Each
tile consists of a core and an associated communication inter-
face. The interface design can be customized based on core
datawidths and operating frequencies to allow for efficient use
of resources. Communication between nodes takes place via
pipelined, point-to-point connections. By limiting intercore
communication to short wires with predictable performance,
high-speed communication can be achieved. A novel aspect of
the architecture is its support for both compile-time scheduled
and runtime dynamic transfer of data. While scheduled data
transfer has been directly optimized, a software-based mecha-
nism for runtime dynamic routing has also been included.

To support the aSOC architecture, an application mapping
tool, AppMapper, has been developed to translate high-level
language application representations to aSOC devices. Mapping

1063-8210/04$20.00 © 2004 IEEE

712 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 12, NO. 7, JULY 2004

steps, including code optimization, code partitioning, commu-
nication scheduling, and core-dependent compilation are part of
the AppMapper flow. Although each step has been fully auto-
mated, design interfaces for manual intervention are provided to
improve mapping efficiency. Mapping algorithms have been de-
veloped for both partitioning and scheduling based on heuristic
techniques. A system-level simulator allows for performance
evaluation prior to design implementation.

Key components of the aSOC architecture, including the
communication interface architecture, have been simulated
and implemented in 0.18- m technology. Experimentation
shows a communication network speed of 400 MHz with an
overhead added to on-chip IP cores that is similar to on-chip
bus overhead. The AppMapper tool has been fully implemented
and has been applied to four signal processing applications
including MPEG-2 encoding. These applications have been
mapped to aSOC devices containing up to 49 cores via the
AppMapper tool. Performance comparisons between aSOC
implementations and other more traditional on-chip commu-
nication substrates, such as an on-chip bus, shows an aSOC
performance improvement of up to a factor of five.

This paper presents a review of SoC-related communication
architectures in Section II. Section III reveals the design philos-
ophy of our communication approach and describes the tech-
nique at a high level. The details of our communication archi-
tecture are explained in Section IV. Section V demonstrates the
application mapping methodology and describes component al-
gorithms. Section VI describes the benchmarks used to evaluate
our approach and our validation methodology. In Section VII,
experimental results for aSOC devices with up to 49 cores are
presented. These results are compared against the performance
of alternative interconnect approaches and previously-published
results. Section VIII summarizes our work and offers sugges-
tions for future work.

II. RELATED WORK

Numerous on-chip interconnect approaches have been
proposed commercially as a means to connect intellectual
property cores. These approaches include arbitrated buses
[2]–[4] and hierarchical buses connected via bridges [5]–[7].
In general, all of these architectures have similar arbitration
characteristics to master/slave off-chip buses with several new
features including data pipelining [2], replacement of tri-state
drivers with multiplexers [3], and separated address/data
buses due to the elimination of off-chip pin constraints. These
approaches, while flexible, have limited scalability due to
the arbitrated and capacitive nature of their interconnection.
Other notable, common threads through on-chip interconnect
architectures include the simplicity of the logic needed on a per
node basis to support communication, their diverse support for
numerous master/slave interconnection topologies [8], and their
integrated support for on-chip testing. Several current on-chip
interconnects [3], [7] support the connection of multiple buses
in variable topologies (e.g., partial crossbar, tree). This support
provides users flexibility in coordinating on-chip data paths
amongst heterogeneous components.

Recently, several network-on-chip communication architec-
tures have been suggested. Researchers at Stanford University
propose an SoC interconnect using packet-switching [9]. The
idea of performing on-chip dynamic routing is described
although not yet implemented. MicroNetwork [10] provides
on-chip communication via a pipelined interconnect. A rotating
resource arbitration scheme is used to coordinate internode
transfer for dynamic requests. This mechanism is limited by
the need for extensive user interaction in design mapping.

Packet-switched interconnect based on both compile-time
static and runtime dynamic routing has been used effectively
for multiprocessor communication for over 25 years. For iWarp
[11], interprocessor communication patterns were statically
determined during program compilation and implemented with
the aid of programmable, interprocessor buffers. This concept
has been extended by the NuMesh project [12] to include col-
lections of heterogeneous processing elements interconnected
in a mesh topology. Although prescheduled routing is appro-
priate for static data flows with predictable communication
paths, most applications rely on at least minimal runtime sup-
port for data-dependent data transfer. Often, this support takes
the form of complicated pernode dynamic routing hardware
embedded within a communication fabric. A recent example of
this approach can be found in the Reconfigurable Architecture
Workstation (RAW) project [13]. In our system, we minimize
hardware support for runtime dynamic routing through the use
of software.

III. ASOC DESIGN PHILOSOPHY

Successful deployment of aSOC requires the architectural de-
velopment of an inter-node communication interface, the cre-
ation of supporting design mapping software, and the successful
translation of target applications. Before discussing these issues,
the basic operating model of aSOC interconnect is presented.

A. Design Overview

As shown in Fig. 1, a standardized communication structure
provides a convenient framework for the use of intellectual
property cores. A simple core interface protocol, joining the
core to the communication network, creates architectural
modularity. By limiting intercore communication to short wires
exhibiting predictable performance, high-speed point-to-point
transfer is achieved. Since heterogeneous cores can operate at
a variety of clock frequencies, the communication interface
provides both data transport and synchronization between
processing and communication clock domains.

Intercore communication using aSOC takes place in the form
of data streams [12] which connect data sources to destinations.
To achieve the highest possible bandwidth, our architecture is
targeted toward applications, such as video, communications,
and signal processing, that allow most intercore communication
patterns to be extracted at compile time. By using the mapping
tools described in Section V, it is possible to determine how
much bandwidth each intercore data stream requires relative
to available communication channel bandwidth. Since stream
communication can generally be determined at compile time

LIANG et al.: ARCHITECTURE AND COMPILER FOR SCALABLE ON-CHIP COMMUNICATION 713

Fig. 2. Multicore data streams 1 and 2. This example shows data streams
from Tile A to Tile E and from Tile D to Tile F. Fractional bandwidth usage
is indicated in italics.

Fig. 3. Pipelined stream communication across multiple communication
interfaces.

[12], our system can take advantage of minimized network con-
gestion by scheduling data transfer in available data channels.

As seen in Fig. 2, each stream requires a specific fraction
of overall communication link bandwidth. For this example,
Stream 1 consumes 0.5/1 of available bandwidth along links it
uses and Stream 2 requires 0.25/1. This bandwidth is reserved
for a stream even if it is not used at all times to transfer valid data.
At specific times during the computation, data can be injected
into the network at a lower rate than the reserved bandwidth,
leaving some bandwidth unused. In general, the path taken by a
stream may require data transfer on multiple consecutive clock
cycles. On each clock cycle, a different stream can use the same
communication resource. The assignment of streams to clock
cycles is performed by a communication scheduler based on re-
quired stream bandwidth. Global communication is broken into
a series of step-by-step hops that is coordinated by a distributed
set of individual tile communication schedules. During com-
munication scheduling, near-neighbor communication is coor-
dinated between neighboring tiles. As a result of this bandwidth
allocation, the dynamic timing of the core computation is de-
coupled from the scheduled timing of communications.

The cycle-by-cycle behavior of the two example data streams
in Fig. 2 is shown in Fig. 3. For Stream 2, data from the core of
Tile D is sent to the left (west) edge of Tile E during communica-
tion clock cycle 0 of a four-cycle schedule. During cycle 1, con-
nectivity is enabled to transfer data from Tile E to the west edge
of Tile F. Finally, in cycle 2 the data is moved to its destination,
the core of Tile F. During four consecutive clock cycles, two
data values are transmitted from Tile A to Tile E in a pipelined

TABLE I
COMMUNICATION SCHEDULES FOR TILES IN FIG. 3

fashion forming Stream 1. Note that the data stream is pipelined
and the physical link between Tile D and Tile E is shared be-
tween the two streams at different points in time. Stream transfer
schedules are iterative. At the conclusion of the fourth cycle, the
four-cycle sequence restarts at cycle 0 for new pieces of data.
The communication interface serves as a cycle-by-cycle switch
for stream data. Switch settings for the four-cycle transfer in
Fig. 3 are shown in Table I.

Stream-based routing differs from previous static routing net-
works [11]. Static networks demand that all communication pat-
terns be known at compile time along with the exact time of all
data transfers between cores and the communication network.
Unlike static routing, stream-based routing requires that band-
width be allocated but not necessarily used during a specific in-
vocation of the transfer schedule. Communication is set up as
a pipeline from source to destination cores. This approach does
not require the exact timing of all transfers, but rather, data only
needs to be inserted into the correct stream by the core interface
at a communication cycle allocated to the stream. Computation
can be overlapped with communication in this approach since
the injection of stream data into the network is decoupled from
the arrival of stream data.

B. Flow Control

Since cores may operate asynchronously to each other, indi-
vidual stream data values must be tagged to indicate validity.
When a valid stream data value is inserted into the network by a
source core at the time slot allocated for the stream, it is tagged
with a single valid bit. As a result of communication scheduling,
the allocated communication cycle for stream data arrival at a
destination is predefined. The data valid bit can be examined
during the scheduled cycle to determine if valid data has been re-
ceived by the destination. If data production for a stream source
temporarily runs ahead of data consumption at a destination,
data for a specific stream can temporarily back up in the com-
munication network. To avoid deadlock, data buffer storage is
required in each intermediate communication interface for each
stream passing through the interface. With buffering, if a single
stream is temporarily blocked, other streams which use the af-
fected communication interfaces can continue to operate unim-
peded. A data buffer location for each stream is also used at
each core-communication interface boundary for intermediate
storage and clock synchronization.

The use of flow-control bits and local communication inter-
face buffering ensures data transfer with the following charac-
teristics:

714 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 12, NO. 7, JULY 2004

• all data in a stream follows the same source-destination
path;

• all stream data is guaranteed to be transferred in order;
• in the absence of congestion, all stream data requires the

same amount of time to be transferred from source to des-
tination;

• computation is overlapped with communication.

C. Runtime Stream Management

For a number of real-time applications, intercore communica-
tion patterns may vary over time. This requirement necessitates
the capability to invoke and terminate streams at various points
during application execution and, in some cases, to dynamically
vary stream source and destination cores at runtime. In devel-
oping our architecture, we consider support for the following
two situations: 1) all necessary streams required for execution
are known at compile time, but are not all active simultaneously
at runtime and 2) some stream source-destination pairs can only
be determined at runtime.

1) Asynchronous Global Branching: For some applications,
it is desirable to execute a specific schedule of stream commu-
nication for a period of time, and then in response to the arrival
of a data value at the communication interface, switch to a com-
munication schedule for a different set of streams. This type of
communication behavior has the following characteristics:

• All stream schedules are known at compile time.
• The order of stream invocation and termination is known,

but the time at which switches are made is determined in
a data-dependent fashion.

• A data value traverses all affected communication inter-
faces (tiles) over a series of communication cycles to allow
for a global change in communication patterns.

This asynchronous global branching technique [14] across
predetermined stream schedules has been shown [15] to support
many stream-based applications that exhibit time-varying com-
munication patterns. The aSOC communication interface archi-
tecture supports these requirements by allowing local stream
schedule changes based on the arrival of a specific data value
at the communication interface. Depending on the value of the
data, which is examined on a specific communication cycle, the
previous schedule can be repeated or a new schedule, already
stored in the communication interface, can be used. This tech-
nique does not require the loading of new schedules into the
communication interface at runtime. Although our architecture
supports runtime update of the schedule memory, our software
does not currently exploit this capability. As a result, all required
stream schedules must be loaded into the interface prior to run-
time via an external interface and a shift chain.

The use of these branching mechanisms can be illustrated
through the use of a data transfer example. Consider a transfer
pattern in which Tile D in Fig. 4 is required to first send a fixed
set of data to Tile A and then send a different fixed set of data to
Tile E. To indicate the need for a change in data destination, the
Tile D core iteratively sends a value to its communication inter-
face. When this value is decremented by the core to a value of
0, control for the communication schedule is changed to reflect
a change in data destination. The two communication interface

Fig. 4. Example of distinct stream paths for two communication schedules that
send data from a source to different destinations.

TABLE II
DATA-DEPENDENT COMMUNICATION CONTROL BRANCHING

FOR TILE D IN FIG. 4

schedules for Tile D which supports this behavior are shown in
Table II. Each communication cycle is represented in the inter-
face with a specific communication instruction. For cycles when
data dependent schedule branching can take place, the target in-
struction for a taken branch is listed second under the next instr.
heading. In these cycles, data is examined by the interface con-
trol to determine if branching should occur. The Tile D to Tile
A stream schedule uses instructions 0 and 1. The Tile D to Tile
E stream schedule uses instructions 2 and 3.

2) Runtime Stream Creation: Given the simplicity of
routing nodes and our goal to primarily support stream-based
routing, communication hardware resources are not provided
to route data from stream sources to destinations that have
not been explicitly extracted at compile time (dynamic data).
However, as we will show in Section VII, often streams
extracted from the user program require only a fraction of
the overall available stream bandwidth. As a result, a series
of low-bandwidth streams between all nodes can be allocated
at compile time via scheduling in a round robin fashion in
otherwise unused bandwidth. Cores can take advantage of these
out-of-band streams at run time by inserting dynamic data into
a stream at the appropriate time so that data is transmitted to
the desired destination core.

IV. ASOC ARCHITECTURE

The aSOC architecture augments each IP core with communi-
cation hardware to form a computational tile. As seen in Fig. 5,
tile resources are partitioned into an IP core and a communi-
cation interface (CI) to coordinate communication with neigh-
boring tiles. The high-level view of the communication interface
reveals the five components responsible for aSOC communica-
tions functionality.

LIANG et al.: ARCHITECTURE AND COMPILER FOR SCALABLE ON-CHIP COMMUNICATION 715

Fig. 5. Core and communication interface.

• Interface Crossbar: allows for intertile and tile-core
transfer.

• Instruction Memory: contains schedule instructions to
configure the interface crossbar on a cycle-by-cycle basis.

• Interface Controller: control circuitry to select an in-
struction from the instruction memory.

• Coreport : data interface and storage for transfers to/from
the tile IP core.

• Communication Data Memory (CDM) – buffer storage
for intertile data transfer.

The interface crossbar allows for data transfer from any input
port (North, South, East, West, and Coreport) to any output
port (five input directions and the port into the controller). The
crossbar is configured to change connectivity every clock cycle
under the control of the interface controller. The controller con-
tains a program counter and operates as a microsequencer. If,
due to flow control signals, it is not possible to transfer a data
word on a specific clock cycle, data is stored in a communica-
tion data memory (CDM). For local transfers between the local
IP core and its communication interface, the coreport provides
data storage and clock synchronization.

A. Communication Interface

A detailed view of the communication interface appears
in Fig. 6. The programmable component of the interface is a
32-word SRAM-based instruction memory that dynamically
configures the connectivity of the local interface crossbar on
a cycle-by-cycle basis based on a precompiled schedule. This
programmable memory holds binary code that is created by
application mapping tools. Instruction memory bits are used to
select the source port for each of the six interface destination
ports (, , , , for the core, for the
interface control). CDM Addr indicates the buffer location
in the communication data memory, which is used to store

Fig. 6. Detailed communication interface.

intermediate routed values as described in Section IV-C. A
program counter PC is used to control the instruction sequence.
Branch control signals from the instruction memory determine
when data dependent schedule branching should occur. This
control can include a comparison of the crossbar output to
a fixed value of 0 to initiate branching.

B. Coreports: Connecting Cores to the Network

The aSOC coreport architecture is designed to permit inter-
facing to a broad range of cores with a minimum amount of
additional hardware, much like a bus interface. Both core-to-in-
terface and interface-to-core transfer are performed using asyn-
chronous handshaking to provide support for differing compu-
tation and communication clock rates. Both input and output
coreports for a core contain dual-port memories (one input port,
one output port). Each memory contains an addressable storage
location for each individual stream, allowing multiple streams
to be targeted to each core for both input and output.

The portion of the coreport closest to the core has been de-
signed to be simple and flexible, like a traditional bus interface.
This interface can easily be adapted to interact with a variety of
IP cores. Since coreport reads and writes occur independently,
the network can operate at a rate that is different than that of
individual cores. Specific core interfacing depends on the core.
For example, as described in Section VI-B, a microprocessor
can be interfaced to the coreport via a microprocessor bus. For
simpler cores, a state machine can control coreport/core inter-
action.

C. Communication Data Memory

As described in Section III-B, due to network congestion or
uneven source and destination core data rates, it may be neces-
sary to buffer data at intermediate communication interfaces. As
shown in Fig. 7, the communication data memory (CDM) pro-
vides one storage location for each stream that passes through
a port of the communication interface. To facilitate interface
layout, the memory is physically distributed across the N, S, E,
W ports. On a given communication clock cycle, if a data value

716 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 12, NO. 7, JULY 2004

Fig. 7. Flow control between neighboring tiles.

cannot be transferred successfully, it is stored in the CDM. The
flow control bits that are transferred with the data can be used
to indicate valid data storage.

In aSOC devices, near-neighbor flow control and buffering
is used. Fig. 7 indicates the location of the communication data
memory in relation to intertile data paths. On a given commu-
nication clock cycle, the stream address for each port indicates
the stream that is to be transferred in the next cycle. Concur-
rently, the crossbar is configured by instruction memory signals
() to transfer the value stored in the crossbar register.
This value is transferred to the receiver at the same time the re-
ceiver valid bit is sent to the transmitter. This bit indicates if
the CDM at the receiver already has a buffered value for the
transmitted stream. If a previous value is present at the receiver,
the transmitted value is stored in the transmitter CDM using
the write signals shown entering the CDM on the left in Fig. 7.
A multiplexer at the input to the crossbar register determines
if the transmitted or previously-stored value is loaded into the
crossbar register on subsequent transfer cycles.

V. ASOC APPLICATION MAPPING TOOLS

The aSOC application mapping environment, AppMapper,
builds upon existing compiler infrastructure and takes advan-
tage of user interaction and communication estimation during
the compilation process. AppMapper tools and methodology
follow the flow shown in Fig. 8. Individual steps include the
following:

• Preprocessing/conversion to intermediate
format – Following parsing, high-level
C constructs are translated to a unified
abstract syntax tree format (AST). After
property annotation, AST representations
are converted to the graph-based Stanford
University Intermediate Format (SUIF) [16]
that represents functions at both high and
low levels.

Fig. 8. aSOC application mapping flow.

• Basic block partitioning and assignment
– An annealing-based partitioner operates
on basic blocks based on core computation
and communication cost models. The parti-
tioner isolates intermediate-form struc-
tures to locate intercore communication.
The result of this phase is a refined
task graph where the nodes are clustered
branches of the syntax tree assigned to
available aSOC cores and the inter-node
arcs represent communication. The number
and the type of nodes in this task graph
match the number and type of cores found

LIANG et al.: ARCHITECTURE AND COMPILER FOR SCALABLE ON-CHIP COMMUNICATION 717

in the device. Following partitioning and
assignment to core types, core tasks are
allocated to individual cores located in
the aSOC substrate so that computation
load is balanced.
• Intercore synchronization: Once com-
putation is assigned to core resources,
communication points are determined. The
blocking points allow for synchronization
of stream-based communication and pre-
dictable bandwidth.
• Communication scheduling: Intercore com-
munication streams are determined through
a heuristic scheduler. This list-sched-
uling approach minimizes the overall crit-
ical path while avoiding communication
congestion. Individual instruction memory
binaries are generated following communi-
cation scheduling.
• Core compilation: Core compilation and
communication scheduling are analyzed in
tandem through the use of feedback. Core
functionality is determined by native core
compilation technology [e.g., field-pro-
grammable gate array (FPGA) synthesis,
reduced instruction set computer (RISC)
compiler]. Communication calls between
cores are provided through fine-grained
send/receive operations.
• Code generation: As a final step, binary
code for each core and communication in-
terface is created.

These steps are presented in greater detail in subsequent sec-
tions.

A. Suif Preprocessing

The AppMapper front-end is built upon the SUIF compiler
infrastructure [16]. SUIF provides a kernel of optimizations and
intermediate representations for high-level C-code structures.
High-level representations are first translated into a lan-
guage-independent abstract syntax tree format. This approach
allows for object-oriented representation for loops, condi-
tionals, and array accesses. Prior to partitioning, AppMapper
takes advantage of several scalar SUIF optimization passes
including constant propagation, forward propagation, constant
folding, and scalar privatization [16]. The interprocedural repre-
sentation supported in SUIF facilitates subsequent AppMapper
partitioning, placement, and scheduling passes. SUIF supports
interprocedural analysis rather than using procedural inlining.
This representation allows for rapid evaluation of partitioning
and communication cost and the invocation of dead-code
elimination. Data references are tracked across procedures.

B. Basic Block Partitioning and Assignment

Following conversion to intermediate form, high-level code
is presented as a series of basic blocks. These blocks represent

Fig. 9. Intercore synchronization.

sequential code, loop-level parallelism, and subroutine func-
tions. Based on calling patterns, dataflow dependency between
blocks is determined through both forward and reverse tracing
of interblock paths [17]. As a result of this dependence anal-
ysis, coarse-gained blocks can be scheduled to promote parallel
computation. As shown in Fig. 9(b) for an infinite impulse re-
sponse (IIR) filter, subfunction dependency forms a flowgraph
of computation that can be scheduled. The most difficult part
of determining this dependency is estimating the computation
time of basic blocks across a range of cores to determine the
core best suited for evaluation. The overall runtime attributed to
each basic block is determined by parameters of the computa-
tion. These include:

• run time: execution time of a single invocation of a
basic block on a specific core. The value is based on
the number of clock cycles, the speed of the core clock,
and the amount of available parallelism.

• invocation frequency: the number of times each basic
block is invoked.

The parameters lead to an overall core run time of
for each function. Core runtime estimates, , are determined
through instruction counts or through simulation, prior to
compilation using techniques described in Section VI-B. Clock
rates, which vary from core to core, are taken into account
during this determination. A goal of design mapping is to max-
imize the throughput of stream computation while minimizing

, the intercore transport time for basic block data. For
a specific core, this value measures the shortest distance to
another core of a different type.

Assignment of basic blocks to specific cores requires a cost
model which takes both computation and communication into
account. For AppMapper, this cost is represented as

(1)

where indicates combined computation time of all
streams, indicates computational parallelism,
indicates combined stream communication time and , , and

are scaling constants. Minimization of this cost function
forms the basis for basic block assignment. The value
is determined from parameters for each core. Prior to basic
block assignment, small code blocks are clustered using (1) in
an effort to minimize intercore transfer. To support placement,
a set of bins are created, one per target core. During the
clustering phase, communication time is estimated by the

718 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 12, NO. 7, JULY 2004

distance of the shortest path between the two types of target
cores. At the end of clustering, a collection of block-based
clusters remains. Dataflow dependency is tracked through the
creation of basic block data predecessor and successor lists.

For core assignment, clustered blocks are assigned to unoc-
cupied cores so that the cost expressed in (1) is minimized.
AppMapper provides a file-based interface for users to manu-
ally assign basic blocks to specific cores, if desired. Following
greedy basic block assignment to cores, a swapping step is used
to exchange tasks across different types of cores subject to the
cost function in (1). This step attempts to minimize system cost
and critical path length by load balancing parallel computation
across cores. Load balancing is supported by the second term in
(1). Basic block assignment is complicated by the presence of
multiple cores with the same functionality in an aSOC device.
Following basic block assignment to a specific type of core, it
is necessary to match the block to a specific core at a fixed loca-
tion. Given the small number of each type of core available (typ-
ically less than 5), a full enumeration of all core assignments is
possible. For later generation devices it may be possible to inte-
grate this search with the basic block to core assignment phase.

C. Intercore Synchronization

Synchronization between cores is required to ensure that data
is consumed based on computational dependencies. Once basic
blocks have been assigned to specific cores in the aSOC de-
vice, communication primitives are inserted into the interme-
diate form to indicate when communication should occur. These
communications are blocking based on the transfer rate of the
communication network. As shown in Fig. 9(a), the data transfer
call to multiply-accumulate unit MAC1 follows an assignment
to . As a result, R4000 processing can be overlapped with
MAC1 processing. Each intercore communication represents a
data stream, as indicated by -labeled arcs in Fig. 9(b).

D. Communication Scheduling

Following basic block assignment, the number of streams
and their associated sources and destinations are known. Given
a set of streams, communication scheduling assigns streams to
communication links based on a fixed schedule. Intertile com-
munication is broken into a series of time steps, each of which
is represented by a specific instruction in a communication
interface instruction memory. Schedule cycle assignment is
made so that the schedule length does not exceed the instruction
storage capacity of each communication interface instruction
memory (32 instructions). Each unidirectional intertile channel
can transmit one data value on each communication clock
cycle. Only one stream can use a channel during a specific
clock cycle. In general, the length of a schedule must be at least
as long as the longest stream Manhattan path. During schedule
execution, multiple source-destination data transfers may take
place per stream. For example, two stream transfers take place
per schedule in the example shown in Fig. 3. To allow for
flow control, all transfers for a stream must follow the same
source-destination path.

Our communication scheduling algorithm forms multitile
connections for all source-destination pairs in space through the
creation of multitile routing paths. Sequencing in time is made

by the assignment of data transfer to specific communication
clock cycles. This space-time scheduling problem has been
analyzed previously [14] in terms of static, but not stream-based
scheduling. For our scheduler, the schedule length is set
to the longest Manhattan source-destination path in terms of
tiles. Streams are ordered by required stream bandwidth per
tile. The following set of operations are performed to create
a source-destination path for each stream prior to scheduling
transfers along the paths.

• The shortest source-destination path for each stream is de-
termined via maze routing using a per-tile cost function of

. In this equation, is the cost of using a
tile communication channel, is the cost of the route
from the path source to tile , and is the total cost of the
path including tile . The cost value represents a com-
bination of the amount of channel bandwidth required for
the path in relation to the bandwidth available and the dis-
tance from the channel to the stream destination.

• For multifanout streams, a Steiner tree approximation is
used to complete routing. After an initial destination is
reached, maze routes to additional destinations are started
from previously determined connections.

Following the assignment of streams to specific paths, the
assignment of stream data transfers to specific communication
clock cycles is performed. Each transfer must be scheduled sep-
arately within the communication schedule. Scheduling is per-
formed via the following algorithm:

1) Set the length of the schedule to the
length of the longest Manhattan path dis-
tance, . Specific schedule time slots
range from 0 to .
2) Order streams by required channel band-
width.
3) For each stream:
(a) Set start time slot to 0.
(b) For each transfer:
i) Determine if intertile channels

along source-destination path are avail-
able during consecutive communication
clock cycles, where is the stream path
length.
ii) If bandwidth available, schedule

transfer communication, increment start
time , and go to step 3.b to schedule
next transfer.
iii) Else increment start time and go

to step 3.b.i.

If any stream cannot fit into the length of the stream schedule
, the schedule length is incremented by one and the scheduling

process is restarted.
In Section III-C1, a technique is described which allows run-

time switching between multiple communication schedules. To
support multiple schedules, the communication scheduling al-
gorithm must be invoked multiple times, once per schedule, and
the length of the combined schedules must fit within the com-
munication interface instruction memory.

LIANG et al.: ARCHITECTURE AND COMPILER FOR SCALABLE ON-CHIP COMMUNICATION 719

E. Core Compilation and Code Generation

Following assignment of basic blocks to cores and sched-
uling, basic block intermediate form code is converted to
representations that can be compiled by tools for each core.
Back-end formats include assembly-level code (R4000 pro-
cessor) and Verilog (FPGA, multiplier). These tools also
provide an interface to the simulation environment described
in Section VI-B. The back-end step in AppMapper involves the
generation of instructions for the R4000 and bitstreams for the
FPGA. Each communication interface is configured through
the generation of communication instructions.

F. Comparison to Previous Mapping Tools

To date, few integrated compilation environments have been
created for heterogeneous systems-on-a-chip. The MESCAL
system [18] provides a high-level programming interface for
embedded SOCs. Though flexible, this system is based on a
communication protocol stack which may not be appropriate
for data stream-based communication. Several projects [19],
[20] have adapted embedded system compilers to SOC en-
vironments. These compilers target bus-based interconnect
rather than a point-to-point network. Cost-based tradeoffs
between on-chip hardware, software, and communication were
evaluated by Wan et al. [8]. In Dick and Jha [21], on-chip
task partitioning was followed by a hill-climbing based task
placement stage.

Our mapping system and these previous efforts have simi-
larities to software systems which map applications to a small
number of processors and custom devices (hardware/software
codesign [22]), and parallel compilers which target a uniform
collection of interconnected processors. Most codesign efforts
[22] involve the migration of operational or basic block tasks
from a single processor to custom hardware. The two primary
operations performed in hardware/software codesign are the
partitioning of operations and tasks between hardware and
software and the scheduling of operations and communications
[22]. The small number of devices involved (usually one or two
processors and a small number of custom devices) allows for
precise calculation of communication and timing requirements,
facilitating partitioning and scheduling.

Our partitioning approach, which is based on task profiling
and simulated annealing, extends earlier task-based codesign
partitioning approaches [23], [24] to larger numbers of tasks and
accurately models target processors and custom chips. Although
all of these efforts require modeling of execution time, our ap-
proach addresses a larger number of target models and requires
tradeoffs between numerous hardware/software partitions. This
requires high-level modeling of both performance and partition
size for a variety of different cores. Our approach to partition as-
signment of basic block tasks is slightly more complicated than
typical codesign assignment. In general, the bus structure em-
ployed by codesign systems [23] limits the need for cost-based
assignments. In contrast, our swap-based assignment approach
for heterogeneous targets is simpler than the annealing based
technique used to assign basic blocks to a large homogeneous
array of processors [13]. Since blocks are assigned to specific
target cores during partitioning, the assignment search is signif-
icantly more constrained and can be simplified.

Fig. 10. aSOC topologies: 9 and 16 cores.

TABLE III
ASOC DEVICE CONFIGURATIONS

Our stream-based scheduling differs from previous codesign
processor/custom hardware communication scheduling [22].
These scheduling techniques attempt to identify exact com-
munication latency between processors and custom devices to
ensure worst-case performance across a variety of bus transfer
modes (e.g., burst/nonburst) [19]. Often instruction scheduling
is overlapped with communication scheduling to validate
timing assumptions [22]. In contrast, our communication
scheduling approach ensures stream throughput over a period
of computation.

VI. EXPERIMENTAL METHODOLOGY

To validate the aSOC approach, target applications have
been mapped to implemented aSOC devices and architectural
models containing up to 49 cores. Parameters associated
with the models are justified via a prototype aSOC device
layout, described in Section VII. Examples of 9 and 16 core
models are shown in Fig. 10. The models consist of R4000
microprocessors [25], FPGA blocks, 32 K 8 SRAM blocks
(MEM), and multiply-accumulate (MAC) cores. The same
core configurations were used for all benchmarks. The FPGA
core contains 121 logic clusters, each of which consists of four
4-input look-up tables (LUTs) and flip flops [26]. The core
population of all aSOC configurations are shown in Table III.

720 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 12, NO. 7, JULY 2004

Fig. 11. Partitioning of MPEG-2 encoder to a 4� 4 aSOC configuration.

A. Target aSOC Applications

Four applications from communications, multimedia, and
image processing domains have been mapped to the aSOC de-
vice models using the AppMapper flow described in Section V.
Mapped applications include MPEG-2 encoding [27], orthog-
onal frequency division multiplexing (OFDM) [28], Doppler
radar signal analysis [29], and image smoothing (IMG). An IIR
filter kernel was used for initial analysis.

1) MPEG-2 Encoder: An MPEG-2 encoder was par-
allelized from sequential code [27] to take advantage of
concurrent processing available in aSOC. Three 128 128
pixel frames, distributed with the benchmark, were used for
aSOC evaluation. For the 4 4 aSOC configuration, MPEG-2
computation is partitioned as shown in Fig. 11. Thick arrows
indicate video data flow and thin arrows illustrate control
signal flow. Frame data blocks (16 16 pixels in size) in the
Input Buffer core are compared against similarly-sized data
blocks stored in the Reference Buffer and streamed into a
series of multiply-accumulate cores via an R4000. These cores
perform motion estimation by determining the accumulated
difference across source and reconstructed block pixels, which
is encoded by the discrete cosine transform (DCT) quantizer,
implemented in an adjacent R4000. The data is then sent to
the controller and Huffman coding is performed in preparation
for transfer via a communication channel. Another copy of the
DCT encoded data is transferred to the inverse discrete cosine
transform (IDCT) circuit, implemented in an R4000 core. The
reconstructed data from the IDCT core is then stored in the
Reference Buffer core for later use. Data transfer is scheduled
so that all computation and storage is pipelined.

2) Orthogonal Frequency Division Multiplexing: OFDM is
a wireless communication protocol that allows data to be trans-
mitted over a series of carrier frequencies [28]. OFDM provides
high-communication bandwidth and is resilient to RF interfer-
ence. Multifrequency transmission using OFDM requires mul-
tiple processing stages including inverse fast Fourier transform
(IFFT), normalization, and noise-tolerance guard value inser-
tion. As shown in Fig. 12, a 2048 complex-valued OFDM trans-
mitter has been implemented on an aSOC model. The IFFT por-
tion of the computation is performed using four R4000 and four
FPGA cores. Resulting complex values are normalized with
four MAC and four R4000 cores. A total of 512 guard values

Fig. 12. OFDM mapped to 16 core aSOC model.

are determined by R4000 cores and stored along with normal-
ized data in memory. The OFDM application exhibits commu-
nication patterns which change during application execution, as
shown in the four stages of computation illustrated in Fig. 12.
The runtime branching mechanism of the communication inter-
face is used to coordinate communication branching for the four
stages.

3) Doppler Radar Signal Analysis: A stream-based Doppler
radar receiver [29] was implemented and tested using an aSOC
device. In a typical Doppler radar system, a sinusoidal signal is
transmitted by an antenna, reflects off a target object, and re-
turns to the antenna. As a result of the reflection, the received
signal exhibits a frequency shift. This shift can be used to de-
termine the speed and distance of the target through the use
of a Fourier analysis unit. The main components of the anal-
ysis include a fast Fourier transform (FFT) of complex input
values, a magnitude calculation of FFT results and the selec-
tion of the largest frequency magnitude value. For the 16-core
aSOC model, a 1024 point FFT, magnitude calculation, and fre-
quency selection were performed by four R4000 and four FPGA
cores. All calculation was performed on 64-bit complex values.
Like OFDM, the Doppler receiver requires communication pat-
terns which change during application execution. The runtime
branching mechanism of the communication interface is used to
coordinate communication branching for the four stages.

LIANG et al.: ARCHITECTURE AND COMPILER FOR SCALABLE ON-CHIP COMMUNICATION 721

Fig. 13. aSOC system simulator.

4) Image Smoothing: A linear smoothing filter was imple-
mented in multicore aSOC devices for images of size 800 600
pixels. The linear filter is applied to the image pixel matrix
in a row-by-row fashion. The scalar value of each pixel is re-
placed by the average of the current value and its neighbors,
resulting in local smoothing of the image and reducing the ef-
fects of noise. To take advantage of parallelism, each image
is partitioned into horizontal slices and processed in separate
pipelines. Data streams are sent from memory (MEM) cores
to multiple R4000s, each accepting a single data stream. Inside
each MAC, each pixel value is averaged with its eight neighbor
values resulting in nine intermediate values. Later in the stream,
an FPGA-based circuit sums the values to generate averaged re-
sults. These results are buffered in a memory core. This appli-
cation was mapped to aSOC models ranging in size from 9 to
49 cores by varying the number of slices processed in parallel.

5) IIR Filter: A three- and six-stage IIR filter were imple-
mented using the 9- and 16-core aSOC models, respectively.
The data distribution and collection stages of the filter use
R4000s. MACs and FPGA cores are used to execute the
middle stages of multiplication and accumulation. SRAM cores
(MEM) buffer both source data and computed results. The
overall application data rate is limited by aSOC communication
speed.

B. Simulation Environment

To compare aSOC to a broad range of alternative on-chip
interconnect approaches, including flat and hierarchical buses,
a timing-accurate interconnect simulator was developed. This
simulator is integrated with several IP core simulators to pro-
vide a complete simulation environment. The interaction be-
tween the computation and communication simulators provides
a timing-accurate aSOC model that can be used to verify a spec-
trum of SoC architectures.

A flowchart of the simulator structure appears in Fig. 13.
For our modeling environment, simulation takes place in two
phases. In phase 1, simulation determines the exact number of

TABLE IV
COMPONENT PARAMETERS

core clock cycles between data exchanges with the communi-
cation network coreport interface. In phase 2, core computa-
tion time is determined between send and receive operations
via core simulation which takes core cycle time into account.
Data communication time is simultaneously calculated based on
data availability and network congestion. Both computation and
communication times are subsequently combined to determine
overall run time.

During the first simulation phase, core computation is repre-
sented by C files created by AppMapper or user-created library
files in C or Verilog. This compute information is used to de-
termine the transfer times of core-network interaction. The exe-
cution times of core basic blocks are determined by invocation
of individual core simulators. Cycle count results of these sim-
ulators are scaled based on the operating frequency of the cores.
Specific simulators include the following.

• Simplescalar: This processor simulator [30] models in-
struction level execution for the R4000 architecture. The
simulator takes C code as input and determines the access
order and number of execution cycles between coreport
accesses. Cycle counts are measured through the use of
breakpoint status information.

• FPGA block simulation: Unlike other cores, FPGA core
logic is first created by the designer at the register-transfer
level. The Verilog-XL simulator is then used to determine
cycle counts between coreport transfers. To verify timing
accuracy, all cores have been synthesized to four-input
LUTs and flip flops using Synplicity Synplify.

• Multiply-accumulate: The multiply-accumulate core is
modeled using a C-language based simulator. Given the
frequency of an input stream, the simulator determines the
number of cycles between coreport interactions.

• SRAM memory cores (MEM): SRAM cores are mod-
eled using a C-language based cycle-accurate simulator.

Layouts, described in Section VII, were used to determine
per-cycle performance parameters of the FPGA, multiply accu-
mulate, and memory cores.

The second stage of the simulator determines communication
delay based on core compute times and instruction memory in-
structions. Following core timing determination, aSOC network
communication ordering and delay is evaluated via the com-
munication simulator. The instruction memory instructions are
used to perform simulation of each tile’s communication inter-
face. This part of the simulator takes in multiple interconnect
memory instruction files. High-level C code represents core and
communication interfaces. As shown in Fig. 9(a), core compute
delay is replaced with compute cycle (CompBlock) delays de-
termined from the first simulation stage. The second input file
to the simulator is a configuration file, previously generated by

722 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 12, NO. 7, JULY 2004

TABLE V
BENCHMARK STATISTICS USED TO DETERMINE ASOC PARAMETERS

AppMapper. This file contains core location and speed infor-
mation, the details of the intercore topology and the intercon-
nection memory instructions for each communication interface.
These files are linked with a simulator library to generate an exe-
cutable. When the simulator is run, multiple core and communi-
cation interface processes are invoked in an event-driven fashion
based on data movement, production, and consumption. CDM
and coreport storage is modeled to allow for accurate evaluation
of intertile storage.

The simulator can model a variety of communications archi-
tectures based on the input parameter file. Architectures include
the aSOC interconnect substrate, the IBM CoreConnect on-chip
bus [7], a hierarchical CoreConnect bus, and a dynamic router.
Parameters associated with aSOC, such as the core type, loca-
tion, speed, and the communication interface configuration, can
be set by the designer to explore aSOC performance on appli-
cations.

VII. RESULTS

To evaluate the benefits of aSOC versus other on-chip
communication technologies, design mapping, simulation,
and layout were performed. Benchmark simulation of aSOC
models were used to determine architectural parameters. Core
model assumptions were subsequently validated via layout. Our
aSOC benchmark implementations were compared to imple-
mentations using alternative on-chip interconnect approaches
and assessed versus previously-published work. As a final step,
the communication scalability of aSOC was evaluated.

A. aSOC Parameter Evaluation and Layout

The benchmarks described in Section VI were evaluated
using the aSOC simulator to determine aSOC parameters such
as the required number of instructions per instruction memory.
The cores listed in Table IV were used in configurations
described in Section VI. R4000 performance and area were
obtained from MIPs [25]. Multiply accumulate, memory, and
FPGA performance numbers were determined through core
layout using TSMC 0.18- m library parameters [31].

Fig. 14. Layout of FPGA core and communication interface.

Fig. 15. Nonuniform aSOC core configuration.

Benchmark runtime statistics determined via simulation are
summarized in Table V. These statistics illustrate usage of var-
ious CI resources across a set of applications. The values were
determined with parameters set to values that led to best-perfor-
mance application mapping. Statistics which were used for CI
architectural choices are highlighted in boldface. Although the
maximum number of instructions per CI was relatively small for
these designs (9), a depth of 32 was allocated in the aSOC pro-
totype to accommodate expansion for future applications. Since

LIANG et al.: ARCHITECTURE AND COMPILER FOR SCALABLE ON-CHIP COMMUNICATION 723

TABLE VI
COMPARISON OF ASOC AND CORECONNECT PERFORMANCE

the maximum total number of streams per CI is 8, each of the
four CDM buffers per CI could be restricted to a depth of 2 in
the prototype. The coreport memory depth was set to four, the
maximum value in terms of streams across all benchmarks.

A prototype SoC device, including aSOC interconnect, was
designed and implemented based on experimentally-determined
parameters. The 9-tile device layout in a 3 3 core configura-
tion contains lookup-table based FPGA cores with 121 clus-
ters of 4 four-input LUTs, a complete communication inter-
face, and clock and power distribution. Each tile fits a size of

with assigned to the com-
munication interface and associated control and clock circuitry
(about 6% of device area). An H-tree clock distribution network
is used to reduce clock skew between tiles. Layout was imple-
mented using TSMC 0.18- m library parameters resulting in a
communication clock speed of 400 MHz. The critical path of
2.5 ns in the communication interface involves the transfer of a
flow control bit from a CDM buffer to the read control circuitry
of a neighboring CDM buffer, as shown in the right-to-left path
in Fig. 7. A layout snapshot of a communication interface, core-
port, and a single FPGA cluster appears in Fig. 14.

The layouts of the communication interface and associated
cores support the creation of a nonuniform mesh structure
which is populated to optimize space consumption. As
shown in Fig. 15, tile sizes range from to

. From data in Table IV it can be determined
that the communication interface incurs about a 20% area
overhead for the R4000 processor. For comparison, an em-
bedded Nios processor core [32] and its associated AMBA bus
interface [6] were synthesized. A total of 206 out of 2904 total
logic cells (7%) were required for the AMBA interface, with
additional area required for bus wiring. This result indicates
that the aSOC communication interface is competitive with
on-chip bus architectures in terms of core overhead.

B. Performance Comparison With Alternative On-Chip
Interconnects

A series of experiments were performed to compare aSOC
performance against three alternative on-chip communication
architectures: a standard CoreConnect on-chip bus, a hierar-
chical CoreConnect bus, and a hypothetical network based on
runtime dynamic routing [33]. Performance was evaluated using

the aSOC simulator described in Section VI-B. In these exper-
iments, the IP cores with parameters shown in Table IV were
aligned in the 9 and 16 configurations shown in Fig. 10. For
each interconnect approach, the relative placement of cores and
application partitioning was kept intact. Only the communica-
tion architecture which connects them together was changed for
comparative results.

To evaluate aSOC bandwidth capabilities, a bench-
mark-based comparison is made for aSOC versus the IBM
CoreConnect processor local bus (PLB) [7]. The PLB bus
architecture allows for simultaneous 32-bit read and write
operations at 133 MHz. When necessary, bus arbitration is
overlapped with data transfer. The architecture requires two
cycles to complete data transfer: one cycle to submit the address
and a second cycle to transport the data. CoreConnect PLB
supports burst transfers up to 16 words. The maximum pos-
sible speedup for a burst transfer versus multiple single-word
transfers is about 2 .

It can be seen in Table VI that aSOC performance improve-
ment over a CoreConnect increases with a larger number of
cores. Run times on a single 200 MHz R4000 are provided
for reference. Relative aSOC improvement over CoreConnect
burst transfer is indicated in the row labeled aSOC speedup.
For most designs the CoreConnect implementation leads to sat-
urated or nearly-saturated bus usage (as indicated by the row
labeled CoreConnect busy).

A limiting factor for shared on-chip buses is scalability. To
provide a fairer comparison to aSOC, a set of experiments was
performed using a hierarchical version of the CoreConnect bus.
Three separate CoreConnect PLBs connect rows of cores shown
in Fig. 10. A CoreConnect OPB bridge [7] joins three sub-
buses (for 9 cores) or four subbuses (for 16 cores). When a
cross-subbus transfer request is made, the OPB bridge serves as
a bus slave on the source subbus and a master for the destination
subbus. As shown in Tables VI and VII, for all but one design,
aSOC speedup versus the hierarchical CoreConnect bus is larger
than speedup versus the standard CoreConnect bus. This effect
is due to the overhead of setting up cross-bus data transfer.

In a third set of experiments, the aSOC interconnect approach
was compared to a hypothetical on-chip dynamic routing ap-
proach. This dynamic routing model applies oblivious dynamic
routing [33] with one 400-MHz router allocated per IP core. Tile
topology for the near-neighbor dynamic network is the same as
shown in Fig. 10. For each transmitted piece of data, a header

724 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 12, NO. 7, JULY 2004

TABLE VII
COMPARISON OF ASOC AND HIERARCHICAL CORECONNECT PERFORMANCE

TABLE VIII
COMPARISON OF ASOC AND DYNAMIC NETWORK PERFORMANCE

indicating the coordinates of the target node is injected into the
network, followed by up to 20 data packets. To allow for a fair
comparison to aSOC flow control, the routing buffer in each
dynamic router is set to be the maximum size required by an
application. The results in Table VIII indicate that the aSOC is
up to 2 times faster than the dynamic model. Performance im-
provements are based on the removal of header processing and
compile-time congestion avoidance through scheduling.

C. Comparison to Published Results

Several experiments were performed to compare the results
of aSOC interconnect versus previously-published on-chip in-
terconnect results. An MPEG-2 decoder, developed from four
Motorola PowerPC 750 cores interconnected with a CoreCon-
nect bus, was reported in [34]. The four 83-MHz compute nodes
require communication arbitration and contain an associated
on-chip data and instruction cache. During decoding, frames
of 16 16 pixels are distributed to all processors and results
are collected by a single processor. To provide a fair perfor-
mance comparison to this MPEG-2 decoder, our aSOC sim-
ulator was supplemented with SimpleScalar 3.0 for PowerPC
[30] and applied to four PowerPC 750 core tiles interconnected
with communication interfaces. The partitioning of computa-
tion was derived from [34], following consultation with the au-
thors. In the experiment, the PowerPC cores run at 83 MHz and
the aSOC communication network runs at 400 MHz. Table IX
compares our results to previously published work. Unlike the
64-bit, 133-MHz CoreConnect model, aSOC avoids communi-
cation congestion by avoiding arbitration and providing a faster
transfer rate (32 bits at 400 MHz) due to point-to-point trans-
fers.

In previously published work [35], OFDM was also imple-
mented using four 83 MHz PowerPC 750 cores interconnected
with a 64-bit, 133 MHz CoreConnect bus. Each packet of
OFDM data contains a 2048-complex valued sample and
a 512-complex valued guard signal. This application was
partitioned into four stages: initiation, inverse FFT, normal-
ization and guard signal insertion. Each stage was mapped
onto a separate processor core. Like the MPEG-2 decoder
described above, the same mapping of computation to 83

TABLE IX
COMPARISON TO PUBLISHED WORK

TABLE X
SCALABILITY OF THE MPEG2 ENCODER ON ASOC

MHz PowerPC 750 cores was applied to aSOC and modeled
using SimpleScalar and aSOC interconnect simulators. Results
are shown in Table IX. The aSOC implementation achieves
improved performance for this application by providing high
bandwidth and pipelined transfer.

Unlike the results for MPEG-2 and OFDM shown in
Tables V–VIII, communication is not overlapped with compu-
tation during execution of the applications. This approach is
consistent with the method used to obtain the previously-pub-
lished results [34], [35].

D. Architectural Scalability

An important aspect of a communication architecture is scala-
bility. For interconnect architectures, a scalable interconnect can
be defined as one that provides scalable bandwidth with reason-
able (e.g., linear) latency increase as the number of processing
nodes increase and as the computing problem size increases
[36]. Under this definition, aSOC provides scalable bandwidth
for many applications, including MPEG-2 encoding and image
smoothing.

The MPEG-2 encoder in Fig. 11 can be scaled by replicating
core functionality, allowing for multiple frames to be simul-
taneously processed in separate threads. A bottleneck of this
approach is a common Input Buffer and data collection buffer
at the input and output of the encoder. Since the communica-
tion delay of distributing the data to threads can be overlapped
with computation, communication congestion and data buffer
contention can lead to performance degradation as design size
scales. Table X illustrates scalable performance improvement
for multiple MPEG-2 threads implemented on aSOC. Device
sizes ranging between 16 and 49 cores were considered. Total
communication cycles increased marginally to accommodate
routing and Input Buffer contention.

Using a similar multiprocessing technique, the image
smoothing application was parallelized across a scaled number
of cores using multiple threads applied to a fixed image size.
Each 3-pixel high slice is handled by an R4000, a MAC, and
an FPGA. Table XI illustrates the scalability of the application
across multiple simultaneously-processed slices. The image
source and destination storage buffers are shared across slices.

LIANG et al.: ARCHITECTURE AND COMPILER FOR SCALABLE ON-CHIP COMMUNICATION 725

TABLE XI
SCALABILITY OF IMAGE SMOOTHING FOR 800� 600 PIXEL IMAGE

TABLE XII
DOPPLER RUN TIME FOR N POINTS (TIMES IN �s)

Application execution time scales down with increased core
count until contention inside the storage buffers eliminates
further improvement.

In a final demonstration of architectural scalability, a number
of multipoint Doppler evaluations were implemented on a 16
core aSOC model. Execution time results of the Doppler appli-
cation using CoreConnect and aSOC interconnect approaches
are shown in Table XII. The benefits of aSOC over CoreCon-
nect are due to the elimination of bus arbitration.

VIII. CONCLUSIONS AND FUTURE WORK

A new communication substrate for on-chip communication
(aSOC) has been designed and implemented. The distributed na-
ture of the aSOC interconnect allows for scalable bandwidth.
Supporting mapping tools have been developed to aid in de-
sign translation to aSOC devices. The compiler accepts high-
level design representations, isolates code basic blocks, and as-
signs blocks to specific cores. Data transfer times between cores
are determined through heuristic scheduling. An integrated core
and interconnect simulation environment allows for accurate
system modeling prior to device fabrication. To validate aSOC,
experimentation was performed with four benchmark circuits.
It was found that the aSOC interconnect approach outperforms
the standard IBM CoreConnect on-chip bus protocol by up to
a factor of five and compares favorably to previously-published
work. A nine-core prototype aSOC chip including both FPGA
cores and associated communication interfaces was designed
and constructed.

We plan to extend this work by considering the addition
of some dynamic routing hardware to the communication
interface. The use of stream-based programming languages for
aSOC also provides an opportunity for further investigation.

REFERENCES

[1] The International Technology Roadmap for Semiconductors, Semicon-
ductor Industry Association, 2001.

[2] IDT Peripheral Bus: Intermodule Connection Technology Enables Broad
Range of System-Level Integration, IDT Inc., 2000.

[3] Wishbone: System-on-Chip (SoC) Interconnect Architecture for Portable
IP Cores Revision B.3, Silicore Inc., 2002.

[4] Silicon Micronetworks Technical Overview, Sonics Inc., 2002.

[5] P. J. Aldworth, “System-on-a-chip bus architecture for embedded appli-
cations,” in Proc. IEEE Int. Conf. Computer Design, Austin, TX, Oct.
1999, pp. 297–298.

[6] D. Flynn, “AMBA: Enabling reusable on-chip design,” IEEE Micro.,
vol. 17, pp. 20–27, July 1997.

[7] The CoreConnect Bus Architecture, IBM, Inc., 1999.
[8] M. Wan, Y. Ichikawa, D. Lidsky, and J. Rabaey, “An energy-conscious

exploration methodology for heterogeneous DSPs,” in Proc. IEEE
Custom Integrated Circuits Conf., Santa Clara, CA., May 1998, pp.
111–117.

[9] W. J. Dally and B. Towles, “Route packets, not wires: On-chip intercon-
nection networks,” in Proc. ACM/IEEE Design Automation Conf., Las
Vegas, NV., June 2001, pp. 684–689.

[10] D. Wingard, “Micronetwork-based integration for SOCs,” in Proc.
ACM/IEEE Design Automation Conf., Las Vegas, NV., June 2001, pp.
673–677.

[11] S. Borkar, R. Cohn, G. Cox, T. Gross, H. T. Kung, M. Lam, M. Levine,
B. Moore, W. Moore, C. Peterson, J. Susman, J. Sutton, J. Urbanski, and
J. Webb, “Supporting systolic and memory communication in iWarp,”
in Proc. 17th Int. Symp. Computer Architecture, June 1990, pp. 70–81.

[12] D. Shoemaker, C. Metcalf, and S. Ward, “NuMesh: An architecture op-
timized for scheduled communication,” J. Supercomputing, vol. 10, no.
3, pp. 285–302, Aug. 1996.

[13] E. Waingold, M. Taylor, D. Srikrishna, V. Sarkar, W. Lee, V. Lee, J. Kim,
M. Frank, P. Finch, R. Barua, J. Babb, S. Amarasinghe, and A. Agarwal,
“Baring it all to software: Raw machines,” IEEE Trans. Comput., vol.
30, pp. 86–93, Sept. 1997.

[14] W. Lee, R. Barua, M. Frank, D. Srikrishna, J. Babb, V. Sarkar, and S.
Amarasinghe, “Space-time scheduling of instruction-level parallelism
on a RAW machine,” in Proc. 8th ACM Conf. Architectural Support for
Programming Languages and Operating Systems, San Jose, CA, Oct.
1998, pp. 46–57.

[15] J. Babb, M. Rinard, C. A. Moritz, W. Lee, M. Frank, R. Barua, and
S. Amarasinghe, “Parallelizing applications to silicon,” in Proc. IEEE
Symp. Field-Programmable Custom Computing Machines, Napa, CA,
Apr. 1999, pp. 70–80.

[16] R. Wilson, R. French, C. Wilson, S. Amarasinghe, J. Anderson, S. Tjing,
S. Liao, C. W. Tseng, M. Hall, M. Lam, and J. Hennessy, “SUIF: An
infrastructure for research on parallelizing and optimizing compilers,”
ACM SIGPLAN Notices, vol. 29, no. 12, pp. 31–37, Dec. 1994.

[17] J. Babb, R. Tessier, M. Dahl, S. Hanono, and A. Agarwal, “Logic em-
ulation with virtual wires,” IEEE Trans. Computer-Aided Design, vol.
16, pp. 609–626, June 1997.

[18] K. Keutzer, S. Malik, R. Newton, J. Rabaey, and A. Sangiovanni-Vin-
centelli, “System-level design: Orthogonalization of concerns and plat-
form-based design,” IEEE Trans. Computer-Aided Design, vol. 19, pp.
1523–1543, Dec. 2000.

[19] P. Knudsen and J. Madsen, “Integrating communication protocol selec-
tion with hardware/software codesign,” IEEE Trans. Computer-Aided
Design, vol. 18, pp. 1077–1095, Aug. 1999.

[20] K. Lahiri, A. Raghunathan, and S. Dey, “Performance analysis of sys-
tems with multichannel communication,” in Proc. Int. Conf. VLSI De-
sign, Calcutta, India, Jan. 2000, pp. 530–537.

[21] R. Dick and N. K. Jha, “MOCSYN: Multiobjective core-based
single-chip system synthesis,” in Proc. European Conf. Design,
Automation and Test, Munich, Germany, Mar. 1999, pp. 263–270.

[22] G. DeMicheli and R. Gupta, “Hardware/software codesign,” Proc.
IEEE, vol. 85, pp. 349–365, Mar. 1997.

[23] P. Eles, Z. Peng, K. Kuchcinski, and A. Doboli, “System level hard-
ware/software partitioning based on simulated annealing and tabu
search,” Des. Automation Embedded Syst., vol. 2, no. 1, pp. 5–32, Jan.
1997.

[24] R. Ernst, J. Henkel, and T. Benner, “Hardware software cosynthesis for
microcontrollers,” IEEE Des. Test Comput., vol. 10, pp. 64–75, Dec.
1993.

[25] MIPS R4000 Product Specification, MIPS Corp., 2000.
[26] V. Betz, J. Rose, and A. Marquardt, Architecture and CAD for Deep-

Submicron FPGAs. Norwell, MA: Kluwer, 1999.
[27] M. Ghanbari, Video Coding: An Introduction to Standard

Codecs. London, U.K.: IEE, 1999.
[28] D. Kim and G. Stuber, “Performance of multiresolution OFDM on fre-

quency-selective fading channels,” IEEE Trans. Veh. Technol., vol. 48,
pp. 1740–1746, Sept. 1999.

[29] A. V. Oppenheim and R. W. Schafer, Discrete-Time Signal Pro-
cessing. Englewood Cliffs, NJ: Prentice-Hall, 1999.

[30] D. Burger and T. M. Austin, “The SimpleScalar Tool Set, Version 2.0,”
Univ. Wisconsin, Dept. Comput. Sci., Madison, WI, 1342, 1997.

726 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 12, NO. 7, JULY 2004

[31] T. Schaffer, A. Stanaski, A. Glaser, and P. Franzon, “The NCSU de-
sign kit for IC fabrication through MOSIS,” in Proc. Int. Cadence User
Group Conf., Austin, TX, Sept. 1998, pp. 71–80.

[32] Altera NIOS Processor Handbook, Altera Corp., San Jose, CA, 2003,
pp. 28–29.

[33] W. Dally and H. Aoki, “Deadlock-free adaptive routing in multicom-
puter networks using virtual channels,” IEEE Trans. Parallel Distrib.
Syst., vol. 4, pp. 466–475, Apr. 1993.

[34] K. Ryu, E. Shin, and V. Mooney, “A comparison of five different multi-
processor SoC bus architectures,” in Proc. EUROMICRO Symp. Digital
Systems Design, Warsaw, Poland, Sept. 2001, pp. 202–209.

[35] K. Ryu and V. Mooney, “Automated bus generation for multiprocessor
SoC design,” in Proc. Eur. Conf. Design, Automation and Test, Munich,
Germany, Mar. 2003, pp. 282–287.

[36] D. Culler, J. P. Singh, and A. Gupta, Parallel Computer Architecture:
A Hardware/Software Approach. San Mateo, CA: Morgan Kaufman,
1999.

Jian Liang (S’00) received the B.S. and M.S. degree
in electrical engineering from Tsinghua University,
Beijing, China, in 1996 and 1999, respectively. He is
currently pursuing the Ph.D. degree at the University
of Massachusetts, Amherst.

His research interests include reconfigurable com-
puting, system-on-a-chip design, digital signal pro-
cessing and communication theory.

Andrew Laffely received the M.S. degree in
electrical engineering from the University of
Maine, Orono, and the Ph.D. degree in electrical
and computer engineering from the University of
Massachusetts, Amherst.

He previously taught at the U.S. Air Force
Academy, and is currently involved in the opera-
tional test of various aircraft platforms for the U.S.
Air Force, Hanscom AFB, MA.

Sriram Srinivasan received the B.Tech. degree
in electrical engineering from the Indian Institute
of Technology, Madras, India, in 2000, and the
M.S. degree from the University of Massachusetts,
Amherst, in 2002.

He is currently working as a Design Engineer
for Advanced Micro Devices (AMD), Austin, TX,
involved in the design of next generation micro-
processors. His current research interests include
VLSI circuit design for low-power and high-speed
applications.

Russell Tessier (M’00) received the B.S. degree in
computer engineering from Rensselaer Polytechnic
Institute, Troy, NY, in 1989, and the S.M. and
Ph.D. degrees in electrical engineering from the
Massachusetts Institute of Technology, Cambridge,
MA, in 1992 and 1999, respectively.

He is an Assistant Professor of electrical and
computer engineering and leads the Reconfigurable
Computing Group at the University of Massachu-
setts, Amherst. He was a founder of Virtual Machine
Works, a logic emulation company currently owned

by Mentor Graphics. His research interests include computer architecture,
field-programmable gate arrays, and system verification.

