
51

Control Hazards

Where are branch conditions and target addresses resolved
(when is the PC overwritten with the branch target address)?

PC

4

Sign
extend

16

0

1

Shift
left

0

1

registers ALU
Instruction

memory

IF/ID ID/EX EX/MEM MEM/WB

Branch

ALUSrc

32

If resolved when the branch instruction is in
MEM stage:
• the 3 instructions following the branch are

already in the pipeline

PC

4

Sign
extend

16

0

1

Shift
left

0

1

registers ALU
Instruction

memory

IF/ID ID/EX EX/MEM MEM/WB

Branch

ALUSrc

32

If resolved when the branch instruction is
in EX stage:
• the 2 instructions following the branch

are already in the pipeline
• How does this affect the cycle time?

Branch address

Branch condition

52

Control Hazards

add $4, $5, $6

IF stage ID stage EX stage MEM stage WB stage

beq $1, $2, 10

lw $3, 300($0)

add $4, $5, $6

beq $1, $2, 10 add $4, $5, $6

Assume that “branches” are resolved in the EX stage. Hence, when a branch decision
is made two instructions are already in the pipe (started execution).

lw $3, 300($0) beq $1, $2, 10 add $4, $5, $6sub $7, $8, $9

Cycle 1

Cycle 2

Cycle 3

Cycle 4

add $4, $5, $6
beq $1, $2, 10
lw $3, 300($0)
sub $7, $8, $9
sw $10, 4($8)
o
o
o

and $3, $2, $1

What is wrong and what can be done?

10 instructions

Branch condition resolved

Example: consider the execution of the following code segment:

sw $10, 4($8)
or

and $3, $2, $1

lw $3, 300($0) beq $1, $2, 10 add $4, $5, $6sub $7, $8, $9Cycle 5

53

Adding no-ops (a software solution)

IF stage ID stage EX stage MEM stage WB stage

beq $1, $2, 10 add $4, $5, $6

beq $1, $2, 10

Make the compiler add no-ops
after the branch instruction.
- Why is that not ideal??

beq $1, $2, 10

add $4, $5, $6

Cycle 2

Cycle 3

Cycle 4

Cycle 5

no-op

no-opno-op add $4, $5, $6beq $1, $2, 10

lw $3, 300($0)
or

and $3, $2, $1
no-op no-op

The branch condition will be resolved in cycle 4 and the correct instruction will
enter the pipe in cycle 5

add $4, $5, $6
beq $1, $2, 10
no-op
no-op
lw $3, 300($0)
sub $7, $8, $9
sw $10, 4($8)
o
o
o

and $3, $2, $1

Branch condition resolved

54

A hardware solution

Introduce a bubble (a no-op introduced by the hardware) to abort unwanted instructions.

IF stage ID stage EX stage MEM stage WB stage

beq $1, $2, 10 add $4, $5, $6

beq $1, $2, 10

beq $1, $2, 10

add $4, $5, $6

Cycle 2

Cycle 3

Cycle 4

Cycle 5

add $4, $5, $6beq $1, $2, 10

and $3, $2, $1 2 1

WBMEMREG EXIF

Cycle 2 Cycle 3 Cycle 4 Cycle 5 Cycle 6 Cycle 7

WBMEMREG EXIF

1 1

2 2 2 2

1

lw $3, 300($0)

sub $7, $8, $9 lw $3, 300($0)

REGIF

IF

add $4, $5, $6

beq

and

lw

sub

2 1 beq $1, $2, 10and $3, $2, $1

55

Reducing the number of aborted instructions

ALU

Data
memory

Registers

ID/EX EX/MEM

zero?

Branch condition and address
resolved in the EX stage

• why would this help?
• Does this have any effect

on the cycle time?

Branch address can be resolved
in ID stage.
Branch condition can also be
resolved in the ID stage if we
use a comparator.

Immediate
constant

PC + 4
Target
PC

+

ID/EX

Target
PC

ALU

Data
memory

Registers

EX/MEM

Immediate
constant

PC + 4 +

zero?

56

Resolving the branches

ALU

Data
memory

Registers

ID/EX

EX/MEM

zero?

Immediate
constant

PC + 4

Branch PC

+

M
u
x

4

Instruction
memory

PC

IF/ID

The mux at the input of PC selects the branch PC when
- the control indicates that the instruction in the ID stage is a beq
- the zero output of the comparator is true

Insert a no-op to the IF/ID buffer whenever the mux selects the branch PC (PCsrc=1).

branch (control signal)
PCsrc

57

Flushing Instructions (creating a bubble)

PC Instruction
memory

4

Registers

M

x
u

M
u
x

M
u
x

ALU

EX

M

WB

M

WB

WB

ID/EX

0

EX/MEM

MEM/WB

Data
memory

M
u
x

Hazard
detection

unit

Forwarding
unit

M
U
X

IF/ID

Sign
extend

Control

M
u
x

=

Shift
left 2

M
u
x

IF.Flush

branch

58

The effect of control hazard on throughput

• Assume that when the branch is resolved, K instructions following the branch are
already in the pipeline.

• If control hazards are dynamically resolved, then each taken branch introduces K
bubbles in the pipeline

• Hence, the average number of clock cycles to execute an instruction is:
CPI = CPInch + * * K

where
CPInch is the CPI with no control hazard
 is the fraction of branch instructions in the instruction mix
 is the probability a branch is actually taken

• For the software solution, where the compiler adds K no-ops after each branch,
CPI = CPInch + * K

Example: if branches are dynamically resolved in the EX stage, 10% of the
instructions are branches and the probability that a branch is taken is 40%, then

CPI = 1 + 2 * 0.1 * 0.4 = 1.08 cycles per instruction (assuming CPInch =1)

Hence, the average execution time of an instruction is 1.08 * clock cycle time

59

Pipeline depth vs. branch penalty

• Today’s processors employ a deep pipeline (possibly more than
20 stages!) to increase the clock rate

– Many stages means smaller amount of work per stage
shorter time needed per stage higher clock rate!

• But what about branch penalty?

– Penalty depends on the pipeline length!

– Branches represent 15~20% of all instructions executed

• Situation is compounded by the increased issue bandwidth (will
discuss when we talk about superscalar processors)

60

Delayed branching

• Another approach to avoid control hazards

• Change the branch semantics such that the “N” instructions after a
branch are always executed before branching takes place.

– The N instructions are executed regardless of the branch outcome

– N is set to be the number of cycles needed to resolve the branch

• The compiler will try to fill the N slots with useful work

– If can’t find instructions to fill the slots, use NOPs.

• Simplifies hardware (eliminates hazards by changing the semantics)

• Possibly good performance – if slots are filled with useful instructions

• Code size will increase??

61

Finding instructions to fill the delay slots

sub $t4, $t5, $t6

62

Different branch handling strategies

• Stall until branch direction is know (compiler can add no-ops)

• Delayed branches

• Assume branch is “NOT TAKEN” and take corrective action if wrong
– Execute fall-off instructions that follow the branch (at PC+4, PC+8, …)
– (PC+4) is computed every cycle, so use it to get the fall-off instructions
– Squash (or cancel) instructions in pipeline if branch is actually taken

• Assume branch is “TAKEN” and take corrective action
– Motivated by the observation that 67% of branches are taken, on average
– Start fetching from the branch target as soon as it is available
– useful if target address is computed earlier than the branch condition.

• Dynamic branch prediction

1 2 3 4 5

Determine
target

Determine
conditionL : beq …

L+1: IL+1

T : IT

T+1 : IT+1

IL+1 beq
IT IL+1 beq

IT+1 IT IL+1 beq
at this point, either
1) kill IL+1 or
2) kill IT and IT+1 and set PC= IL+2

