

Project 1 (due October 8, 2019)

To be completed by teams of three students each

The goal of this project is to simulate a simplified superscalar architecture that uses static

scheduling to avoid control hazards and dynamic scheduling to mitigate structural and control

hazards.

Design Approach

The simplified superscalar pipeline that you will simulate has the following basic structure:

You will run your simulator on 4 short and 2 long trace files (sample1.tr, sample2.tr, sample3.tr,

sample4.tr) and (sample_large1.tr, sample_large2.tr). These files are accessible at

/afs/cs.pitt.edu/courses/1541/long_traces and /afs/cs.pitt.edu/courses/1541/short_traces. A small

trace, sample.tr, can also be found in that directory.

Project Setup:

You are given a program, five_stage.c, which reads a trace file (a binary file containing

a sequence of executed instructions) and simulates a 5 stage pipeline ignoring any

control and data hazards. It outputs the total number of cycles needed to execute the

instructions in the trace file and, if a switch trace_view_on is set, the instruction that

exists the pipeline in each cycle.

Each trace file is a sequence of dynamic trace items, where each trace item represents

one instruction executed in the program that has been traced. After five_stage.c reads

a trace item, it stores it in a structure:

struct instruction {

 uint8_t type; // holds the op-code - see below

 uint8_t sReg_a; // 1st operand

 uint8_t sReg_b; // 2nd operand

 uint8_t dReg; // dest. operand

 uint32_t PC; // program counter

 uint32_t Addr; // mem. address

};

where

enum opcode_type {

 ti_NOP = 0,

 ti_RTYPE,

 ti_ITYPE,

http://cs.pitt.edu/~melhem/courses/1541p/files/long_traces
http://cs.pitt.edu/~melhem/courses/1541p/files/short_traces
http://cs.pitt.edu/~melhem/courses/1541p/files/short_traces/sample.tr
http://cs.pitt.edu/~melhem/courses/1541p/files/five_stage.c

 ti_LOAD,

 ti_STORE,

 ti_BRANCH,

 ti_JTYPE,

 ti_SPECIAL,

 ti_JRTYPE

};

The “PC” (program counter) field is the address of the instruction itself. The “type” of an

instruction provides the key information about the instruction. A detailed list of

instructions is given below:

NOP - it's a no-op. No further information is provided.

RTYPE - An R-type instruction.

 sReg_a: first register operand (register name)

 sReg_b: second register operand (register name)

 dReg: destination register name

 PC: program counter of this instruction

 Addr: not used

ITYPE - An I-type instruction that is not LOAD, STORE, or BRANCH.

 sReg_a: first register operand (register name)

 sReg_b: not used

 dReg: destination register name

 PC: program counter of this instruction

 Addr: immediate value

LOAD - a load instruction (memory access)

 sReg_a: first register operand (register name)

 sReg_b: not used

 dReg: destination register name

 PC: program counter of this instruction

 Addr: memory address

STORE - a store instruction (memory access)

 sReg_a: first register operand (register name)

 sReg_b: second register operand (register name)

 dReg: not used

 PC: program counter of this instruction

 Addr: memory address

BRANCH - a branch instruction

 sReg_a: first register operand (register name)

 sReg_b: second register operand (register name)

 dReg: not used

 PC: program counter of this instruction

 Addr: target address

JTYPE - a jump instruction

 sReg_a: not used

 sReg_b: not used

 dReg: not used

 PC: program counter of this instruction

 Addr: target address

SPECIAL - it's a special system call instruction

 For now, ignore other fields of this instruction.

JRTYPE - a jump register instruction (used for "return" in functions)

 sReg_a: source register (that keeps the target address)

 sReg_b: not used

 dReg: not used

 PC: program counter of this instruction

 Addr: target address

First, you should compile and run the program five_stage.c (which includes CPU.h)

which takes two arguments; the name of the trace file and a switch value (0 or 1). Make

sure that when you execute “five_stage sample.tr 1” you get the following output (if the

second argument is 0 rather than 1, only the last line is printed):

[cycle 5] LOAD: (PC: 2097312)(sReg_a: 29)(dReg: 16)(addr: 2147450880)

[cycle 6] ITYPE: (PC: 2097316)(sReg_a: 255)(dReg: 28)(addr: 4097)

[cycle 7] ITYPE: (PC: 2097320)(sReg_a: 28)(dReg: 28)(addr: -16384)

[cycle 8] ITYPE: (PC: 2097324)(sReg_a: 29)(dReg: 17)(addr: 4)

[cycle 9] ITYPE: (PC: 2097328)(sReg_a: 17)(dReg: 3)(addr: 4)

[cycle 10] ITYPE: (PC: 2097332)(sReg_a: 255)(dReg: 2)(addr: 2)

[cycle 11] RTYPE: (PC: 2097336)(sReg_a: 3)(sReg_b: 2)(dReg: 3)

[cycle 12] RTYPE: (PC: 2097340)(sReg_a: 0)(sReg_b: 3)(dReg: 18)

[cycle 13] STORE: (PC: 2097344)(sReg_a: 28)(sReg_b: 18)(addr: 268454020)

[cycle 14] ITYPE: (PC: 2097348)(sReg_a: 29)(dReg: 29)(addr: -24)

[cycle 15] RTYPE: (PC: 2097352)(sReg_a: 0)(sReg_b: 16)(dReg: 4)

….

[cycle 26] BRANCH: (PC: 2149760)(sReg_a: 16)(sReg_b: 0)(addr: 2149800)

[cycle 27] LOAD: (PC: 2149764)(sReg_a: 16)(dReg: 4)(addr: 2147450887)

…

[cycle 36] BRANCH: (PC: 2140580)(sReg_a: 17)(sReg_b: 0)(addr: 2140596)

[cycle 37] RTYPE: (PC: 2140596)(sReg_a: 0)(sReg_b: 0)(dReg: 16)

....

 + Simulation terminates at cycle : 1004

Your assignment is to use five_stage.c as a guide to write a simulator for the superscalar

pipeline (superscalar.c). You will test your simulator using your own generated traces and

then evaluate the architecture on the traces provided. You will submit your code, test

results, results of comparing different design techniques and the output of your

simulations. Following are the main tasks in that project:

Task 1:

Modify five_stage.c to simulate a superscalar with two pipelines, the first for ALU, branch/jump

and SPECIAL instructions and the other for load/store instructions. The IF stage fetches (and

http://cs.pitt.edu/~melhem/courses/1541p/files/CPU.h

buffers) two consecutive instructions every cycle and the ID stage decodes and reads the

registers for two consecutive instructions every cycle. A dynamic scheduler will then send up to

two instructions every cycle from the ID stage to the EX stages (when an instruction is moved

from ID to EX, we say that the instruction is issued). Note that five_stage.c does not deal with

potential hazards (and hence does not simulate correct execution). Your superscalar simulator

should correctly deal with hazards as follows:

Structural hazards: If during a given cycle the two instructions in the ID stage are to be issued

to the same pipeline (structural hazard), then only the first instruction is issued and the second

one remains in the ID stage. Consequently, only one new instruction is fetched and one

instruction is decoded during this cycle. Note that you need to keep track of the order of the two

instructions that are in the ID stage so that you do not issue instructions out of order.

Data hazards: Assuming that the architecture supports hardware forwarding, data

hazards will be avoided by a dynamic scheduler which will not issue an instruction

(move it from ID to EX) if it detects a data hazard. Specifically:

1. The scheduler will not issue two instructions in the same cycle if one of them
will use the result of the other (two data dependent instructions). Forwarding
will not be possible in this situation.

2. The scheduler will not issue an instruction that read data from a specific
register, R at a given cycle, If during that cycle, the EX stage was processing
a load instruction that will write into R. This means that one of the pipelines
(or possibly both) will stall (by inserting a no-op) until the load instruction
fetches the data from memory.

Note that if only one instruction is issued in a given cycle, then only one instruction will

be fetched and one will be decoded in that cycle. If no instruction is issued in a given

cycle, then no instructions will be fetched and decoded in that cycle. Again, you need to

keep track of the order of the two instructions that are in the ID stage so that you do not

issue instructions out of order.

Control hazards: Assuming that branches and jumps are resolved in the ID stage, you

will simulate static avoidance of control hazards by the compiler. That is, you will

assume that the compiler adds a no-op after each branch or jump instruction. Note that

the traces you are given are dynamic traces that do not include such no-ops. Hence,

while reading instructions from the trace file, you should add a no-op after each branch

and jump instruction.

Task 2:

You need to verify the correctness of your simulator. To help you with this task, the following

program, trace_generator.c, may be used to build your own test trace files (very short

sequence of instructions). This program takes the name of the trace file that you want to create

as a command line argument and will prompt you for the 5 fields of the “instruction” struct for

each instruction that you want to include in the trace. You may verify the correctness of your

simulation by testing it on multiple test traces that you specifically create to test specific

features/scenarios.

Task 3:

Run your simulator on the given long and short traces.

http://cs.pitt.edu/~melhem/courses/1541p/files/trace_generator.c

What your group should upload to the box folder specified to you in the email that the

TA sent you:

1) Your source code for superscalar.c that take 2 arguments; the input trace file and
the trace_view_on switch (in that order). In case the last parameter is not
specified, its default values should be 0. When trace_view_on = 1 superscalar.c,
should produce two lines for every cycle (each line having the same format as in
five_stage.c).

2) A pdf file which contains
a. The result of running the short traces that you used in task 2 on both

five_stage.c and superscalar.c with trace_view_on = 1. Note that the TA will
run her own short traces, in addition to your own test traces, to test the
correctness of your program.

b. The result of running your simulators with trace_view_on = 0 for each short
and long trace file.

Note: Prior to submission, make sure your code compiles and runs on the CS Linux cluster
(ssh linux.cs.pitt.edu) which will be used for grading. You should also generate all submitted
results on this cluster.

Grading Criteria: The maximum grade for the project will be 80 points distributed as follows:

Grade
Percentage

Criteria

15 a basic superscalar simulator which compiles and runs

15 Correctness testing of the simulator (your own verification effort)

10 Results of running on the long and short traces

10 Handling control hazards correctly (passing the TA tests)

15 Handling structural hazards correctly (passing the TA tests)

15 Handling data hazards correctly (passing the TA tests)

Normally, all members of a team will receive the same grade for the project. However, if any
member of the team complains about the lack of contribution from other members, then I will
set up an oral interview with all the members of the team to discuss the contribution of each
member and determine if I should assign different grades to different members.

NOTE: The files five_stage.c, trace_generator.c and CPU.h can be copied from
/afs/cs.pitt.edu/courses/1541.

../../../public/html/courses/1541p/files

