
1

Chapter 6

Parallel Processing

2

Evolution of parallel hardware

• I/O channels and DMA
• Pipelined functional units
• Vector processors (ILLIAV IV was built in 1974)

• Multiprocessors (cm* and c.mmp were built in the 70’s)
• Instruction pipelining and superscalers

• Supercomputers - Massively Parallel Processors (Connection machine,
T3E, Blue Gene, …)

• Symmetric Multiprocessors (SMPs)

• Distributed computing (Clusters, server farms, grids, clouds)

• Multi-core processors and Chip Multiprocessors
• Graphics Processor Units (GPU) as accelerators

3

Pipelining and Instruction Level Parallelism

• Pipelining overlaps various stages of instruction execution

• Pipelining, however, has several limitations.

– The speed of a pipeline is limited by the slowest stage.

– Data and structural dependencies

– Control dependencies

• May use multiple pipelines VLIW and Superscalers

Instruction
memory

Register
file

Pipeline 1

Pipeline N

PC

• In-order issue/execution: If an instruction cannot be issued because of
potential hazard, the following instruction(s) cannot be issued.

4

Superscalar Execution

• Out-of-order execution: a more aggressive model where instructions can
be issued to the pipeline(s) out of order. In this case, if an instruction
cannot be issued because a potential hazard, the following instruction(s)
can be issued (sometimes called dynamic issued).

• Usually, cannot keep all pipelines busy all the time Instruction
m

em
ory

R
egister
file

P
ipeline 1

P
ipeline N

P
C

5

Exploring System Level Parallelism

• Why ?

– ILP (Instruction Level Parallelism) is limited

– Power consumption limits the increase in clock frequency

• Multi-tasking:

– Divide your task into multiple sub-tasks to run on multiple CPUs.

– Multi-threading is a form of multi-tasking (threads are light weight
tasks).

• The number of tasks (threads) does not have to be equal to the number of
CPU’s – can multiplex tasks (threads) on a CPU.

Task 1 Task 2 Task 3 Task 1 Task 2 Task 3

CPU1 CPUCPU2 CPU3

6

How to create parallel applications

• Creation of multiple tasks (threads):
 Automatically (for example, by the compiler)
 Specified by the user (user needs to think parallel)

7

Multiprocessors

• Idea: create powerful computers by connecting many smaller ones
good news: it works
bad news: it is hard to write correct and efficient concurrent programs.

• Every CS/CoE professional has to deal with parallelism because Chip
Multiprocessors are now the norm

SMP - Symmetric multiprocessors Network connected MP

Cache

processor

interconnection

Memory I/O

Cache

processor

Cache

processor

Interconnection

Cache

processor

Memory

Cache

processor

Memory

Cache

processor

Memory

Memory

8

• For a given problem A, of size n, let Tp (n) be the execution time on p

processors, and Ts(n) be the execution time (of the best algorithm for A) on

one processor. Then,

Speedup Sp (n) = Ts(n) / Tp (n)

Efficiency Ep (n) = Sp (n) / p

Speedup is between 0 and p, and efficiency is between 0 and 1.

Speedup and efficiency (Section 6.2)

Minsky’s conjecture:

Speedup is logarithmic in p

S

p

Linear speedup:

Speedup is linear in p

9

Speedup and efficiency

Amdahl’s law:

If f is the fraction of the task that can be executed in parallel

Tp = (1-f) * Ts + f * Ts / p

Speedup

p
f

f
S p

)1(

1
)1(

1

f
p is very large

Maximum speedup,
assuming infinite parallelism

• Scalability

 If can maintain the efficiency for larger p independently of the size of the

problem, n, then we have strong scalability.

 If we can maintain the efficiency for larger p only by increasing the size

of the problem, then we have weak scalability.

10

Scaling Example 1

• Problem Dot(n) computing the dot product of two vectors

• Dot(1000) on a single processor: Ts = 1000 * (time to add + time to multiply)

• Dot(1000) on 10 processors (assuming top = time to add = time to multiply)

– The 1000 multiplications can be done in parallel on the 10 processors

– The 1000 additions cannot be done in parallel (accumulating 1000 values)

– Tp=10 = 1000/10 × top + 1000 × top = 1100 × top

– Speedup, S10 = 2000/1100 = 1.82 (efficiency = 18.2%)

• Dot(1000) on 100 processors

– Time = 1000/100 × top + 1000 × top = 1010 × top

– Speedup, S100 = 2000/1010 = 1.98 (efficiency = 2%)

• Amdahl law gives the maximum possible speedup

f for the above problem is 0.5 max speedup = 2.

𝑥 𝑖 ∗ 𝑦 𝑖

Dot(1000) does not scale
strongly when the number
of processors changes from

10 to 100

11

Scaling Example 2

• Problem Mat(n) add two n×n matrices then sum the diagonals of the result

• Mat(10) on a single processor: Ts = (100 + 10) × top

• Mat(10) on 10 processors

– The addition of two matrices can be done in parallel

– The summation of 10 diagonal elements cannot be done in parallel

– Tp=10 = 100/10 × top + 10 × top = 20 × top

– Speedup, S10 = 110/20 = 5.5 (efficiency = 55%)

• Mat(10) on 100 processors

– Tp=100 = 100/100 × top + 10 × top = 11 × top

– Speedup, S100 = 110/11 = 10 (efficiency = 10%)

• Note: can use Amdahl law to find the maximum possible speedup

– f for Mat(10) is 100/110 max speedup = 11.

Mat(10) does not scale
strongly when the number
of processors changes from

10 to 100

12

Scaling Example 2 (cont.)

• Mat(100) same problem but when matrix size is 100 × 100.

• Single processor: Ts = (10000 + 100) × top

• p = 10 processors
- Speedup, S10 = 10100/1100 = 9.18 (91.8% efficiency)

• p = 100 processors
- Speedup, S100 = 10100/200 = 50.5 (50.5% efficiency)

• However:

• Mat(100) on 10 processors S10 = 9.18 (91.8% efficiency)

• Mat (1000) on 100 processors S100 = 91 (91% efficiency)

• The efficiency of Mat (n) at n=100 and p=10 can be (almost) maintained at
p=100 if we increase n to 1000. Hence, Mat(n) is weakly scalable.

Mat(10) does not scale
strongly when the number
of processors changes from

10 to 100

Mat() scales strongly when the number of
processors changes from 10 to 100 and

the matrix size increases from 100 to 1000

