

Loosely Coupled Clusters

- Network of independent computers
- Each has private memory and OS
- Connected using I/O system (ex:Ethernet or a switch)
- Suitable for applications with independent tasks
- Web servers, databases, simulations, ...
- High availability, scalable, affordable
- Problem: Low interconnect bandwidth (compared to SMP)
- Grid Computing
- computers interconnected by long-haul networks (ex: Internet)
- Work units farmed out, results sent back
- Can make use of idle time on PCs (ex: PITTGRID)

Programming a distributed address space machine

- Assume that 10000 values are stored in the local memories of 16 processors such that 625 values are stored in $x[0] \ldots x[624]$ in the local memory of each processor.
- All variables are local variables (each processor has its own copy) - no shared variables.
- The function "send (m, p) " sends a message containing the value of m to processor p.
- The function "receive (m) " receives a message and puts the received value in m.

> sum = 0;
for ($i=0 ; i<625 ; i++$)
Compare with the shared
sum $=$ sum $+x[i] ;$
half $=8 ; \quad{ }^{*} P=16$ */ memory program on slide 34.
for ($i=0 ; i<4 ; i++$)
\{ if (2*half > Pid >= half) send (sum, Pid - half);
if (Pid < half) \{ receive (remote_sum);
sum $=+$ remote_sum ; \}
half = half / 2; \}.

- No shared variables.
- Where is the global sum?
- The distribution of the initial data to the local memories is done either by the programmer or by the compiler.

Interconnection network (Section 6.8)

- To connect processors to memories or processors to processors

2D Mesh

N -cube $(\mathrm{N}=3)$

Fully connected

Bus

Tree

- Bandwidth
- Cost (wires, switches, ports, ...)
- Scalability
- Topology has been a focus of architects

Evaluating Interconnection Network topologies

- Diameter: The distance between the farthest two nodes in the network.
- Average distance: The average distance between any two nodes in the network.
- Node degree: The number of neighbors connected to any particular node.
- Bisection Width: The minimum number of wires you must cut to divide the network into two equal parts.
- Cost: The number of links or switches (whichever is asymptotically higher) is a meaningful measure of the cost. However, a number of other factors, such as the ability to layout the network, the length of wires, etc., also factor in to the cost.

2-D torus

- Diameter??
- Bisection bandwidth??
- Routing algorithms
- x-y routing
- Adaptive routing
- 2D mesh (without the wraparound connections)

- Variants
- 1-D (ring), 3-D.

Hypercube interconnections

- An interconnection with low diameter and large bisection width.
- A q-dimensional hypercube is built from two (q-1)-dimensional hypercubes.

Dimension 0

1-dimension binary hypercube

2-dimension binary hypercube

3-dimension binary hypercube

A 4-dimension Hypercube (16 nodes)

- Can recursively build a q-dimension network - has 2^{q} nodes

Centralized switching: Buses and crossbars

Centralized switching: Multistage networks

Circuit switching: circuits are established between inputs and outputs - arbitrate entire circuits.

Packet switching: packets are buffered at intermediate switches - arbitrate individual switches.

- NxN Omega network: $\log \mathrm{N}$ stages, with $\mathrm{N} / 2,2 \times 2$ switches.
- A blocking network: some input-output permutations cannot be realized due to path conflicts.

Fat tree networks

