
26

Shared memory systems (CMP, multicores, manycores) (sec. 6.5)

On one chip

Cache

processor

interconnection

Memory I/O

Cache

processor

Cache

processor

interconnection

Memory I/O

Cache

processor

Cache

processor

Cache

processor

L2 Cache

Cache

processor

Cache

processor

Cache

processor

L2 Cache

27

Chip Multiprocessors

L2

L1

P

Memory system

Memory controller

L1

P

L1

P

L1

P

L2

L1

P

Memory system

System interconnect

L1

P

L1

P

L1

P

L2 L2 L2

Memory controller

Shared L2 systems Private L2 systems

• Examples: Intel Pentium • Examples: AMD Opteron

28

Example: The Sun Fire E25 K

http://www.sun.com/servers/highend/sunfire_e25k/specs.xml

• Board = 4 SPARCS IV + 64 GB memory

• Up to 18 boards connected by crossbars

• 1.15 TB of Distributed shared memory

P

L1/L2

P

L1/L2

P

L1/L2

P

L1/L2

BUS

Mem.

P

L1/L2

P

L1/L2

P

L1/L2

P

L1/L2

BUS…

Interconnection Network (cross bars)

Mem. Mem. Mem. Mem. Mem. Mem. Mem.

29

Thinking parallel

x[0] =+ 16

x[0] =+ 15

x[0] =+ 14

x[0] =+ 13

x[0] = 10+5

x[0] = 6+4

x[0] = 3+3

x[0] =1+2

time

...

For (i = 1 ; i < 16 ; i++)
{

x[0] = x[0] + x[i]
}

• Takes n-1 steps to sum n numbers on one
processor

• Applies to associative and commutative
operations (+, *, min, max, …)

• The following computes the sum of
x[0]+…+x[15] serially:

x[i] = i+1

30

Parallel sum algorithm (on 8 processors)

P0 P1 P2 P3 P4 P5 P6 P7

=1+2 =3+4 =5+6 =7+8
=3 =7 =11 =15

=9+10 =11+12 =13+14 =15+16
=19 =23 =27 =31

time

P0 P2 P4 P6X[0]=3+7 X[4]=11+15 X[8]=19+23 X[12]=27+31

P0 P4 X[8]=42+58X[0]=10+26

P0
X[0]=36+100

• Takes log n steps to sum n
numbers on p= n/2 processor

x[0]+x[1] x[2]+x[3] x[4]+x[5] x[6]+x[7] x[8]+x[9] ……. ….. x[14]+x[15]
x[0]= x[2]= x[4]= x[6]= x[8]= x[10]= x[12]= x[14]=

31

half = 8; /* n=16 */

repeat {

if (Pid < half) x[Pid] = x[Pid] + x[Pid+half];

half = half/2;

} ;

until (half == 0);

Example code on SMP

Pid is the
processor ID

Processor 1
Processor 2
Processor 3

Potential for race
conditions??

Barrier
synchronization

Should “half”
be private or

shared?

half = 1

half = 2

half = 4

half = 8

x[0]x[1]x[2]x[3]x[4] x[5] x[6]x[7] x[8]x[9]x[10]x[11]x[12]x[13]x[14] x[15]

Shared memory

P0 P1 P2 P3 P4 P5 P6 P7

P0 P1 P2 P3

P0 P1

P0

32

n=20 ; half = n / 2 ;

repeat

{

if (Pid < half) x[Pid] = x[Pid] + x[Pid+half];

if (n % 2 != 0 && Pid == 0) /*when n is odd; P0 gets the last element */

x[0] = x[0] + x[n-1];

n = half ;

half = half / 2;

barrier synch();

};

until (half == 0);

Example: when p = 10 (not a power of 2)

Now, we want to sum n elements on p processors, n >> p

1 2 3 4 5 6 7 8 90

1 2 3 40

10

0

x[0] …… x[19]

33

time• Need 5 steps to sum 16 numbers
on 4 processor
 Speedup =

• Need 255+2 steps to sum 1024
numbers on 4 processors
 Speedup =

• How long does it take to sum n
numbers on p processors?

 Speedup =
1+2 5+6 9+10 13+14

+3

+4

+7

+8

+11

+12

+15

+16

10+26 42+48

36+100

Parallel sum of 16 elements on 4 processors

• Divide the array to be summed
into 4 parts and assign one part
to each processor

P0 P1 P2 P3

P0 P1 P2 P3

15/5 = 3

1023/257 = 3.9

𝑛
𝑛
𝑝 𝑙𝑜𝑔 𝑝

𝑛 1
𝑛
𝑝 1 𝑙𝑜𝑔 𝑝

34

Parallel sum on a shared address space machine

• Assume x[0] … x[9999] are stored in shared memory.

• Assume P =16 processors, each with an identifier Pid (between 0 and 15)

• To sum the 10000 numbers, each processor executes the following:

sum[Pid] = 0;

for (i = 625 * Pid ; i < 625 * (Pid +1) ; i++)

sum[Pid] = sum[Pid] + x[i];

half= 8 ; /* P = 16 */

for (i=0 ; i < 4 ; i++)

{ synchronize ; /* a barrier */

if(Pid < half) sum[Pid] = sum[Pid] + sum[Pid + half] ;

half = half / 2; }

• sum[] and x[] are shared arrays,

• half, Pid and i are private variables (each processor has its own copy).

• Where will the global sum end up being?

• What if we want all processors to get a copy of the global sum?

• How would you change the program if P is not a power of two?

• Rewrite the program in terms of the # of processors and the size of x?

35

Example: dot product of two vectors, x and y (using a single thread)

EX: Computing the dot product on shared memory

dp = 0 ;

for (i = 0 ; i < n ; i++)

dp += x[i] * y[i]

x

y

dp

x

pdp

y

PE0 PE1 PE2 PE3

dp

PE0

Using 4 processors:

• Partition the arrays into 4 parts

• Each processor computes a partial sum

• One processor sums up the partial sums

(could use binary tree reduction)

36

• Multi-threading was originally designed for Hiding Memory Latency
• With multicores, multiple threads will execute on multiple cores

for (k = 0; k < 4; k++) /* fork 4 threads */

create_thread (partial_product, k, n); /* k is used as a thread id */

Wait until all threads return ; /* join threads */

for (k = 0; k < 4; k++)

dp += pdp[k] ;

Multi-thread version of the dot product example

// x[] , y[], pdp[] and dp = 0 are all declared shared variables

x

pdp

y

Thread0 Thread1 Thread2 Thread3

dp

Main
thread

void partial_product (int k, int n);

{ int i ; /* private variable */

pdp[k] = 0 ;

for (i = k*n/4; i < (k+1) * n/4 ; i++)

pdp[k] += x[i] * y[i] ;

return ; }

37

// x[] , y[] and dp = 0 are all declared shared variables

for (k = 0; k < 4; k++)

create_thread (partial_product, k , n);

Wait until all threads return ;

void partial_product (k, n);

{ int i, pdp = 0 ; /* pdp is private -- each thread has its own copy */

for (i = k*n/4; i < (k+1) * n/4 ; i++)

pdp += x[i] * y[i] ;

pd += pdp ;

return ;

}

Another version of the dot product example

Shared (global) variables

load dp from memory
Add pdp to dp
store dp to memory

x

y

PE0 PE1 PE2 PE3

dp

38

Synchronization (race conditions)

What is the output of the following program??

load dp from memory
Add 1 to dp
store dp to memory

Most parallel languages
provide ways to declare and

use locks and/or critical sections

dp = 0 ;
for (id = 0; id < 4; id++)

create_thread (…, count , …);

void count ();
{

dp = dp + 1;
}

 A critical section is a section of code that can be executed by one
processor at a time (to guarantee mutual exclusion)

 locks can be used to enforce mutual exclusion

get the lock ;
dp = dp + 1 ;
release the lock ;

PE0 PE1 PE2 PE3

dp

39

• We need mutual exclusion in both parallel and serial programs (why?)

• Locks can be used to allow mutual exclusion, and hence provide a
mechanism for exclusive access to shared data.

• Hardware support (in the form of atomic operations) is needed to implement
locks

– Atomic load-modify-store instructions,

– Atomic swap instructions (swap the contents of a memory location with
that of a register).

Mutual Exclusion

pd=0

CPU pd=0

CPU pd=0

cache

cache

memory

• In cache coherent systems, a cached
memory location should be in the “Exclusive”
state while executing an atomic operation on
this location.

40

Implementing locks using atomic swap

• Atomic Swap interchanges a value in a register for a value in memory

• loads the value from a memory location into the register

• stores the value in register into the memory location

• Atomic swap can be used to implement locks:

• The lock is represented by a variable, L
• L=1 locked

• L=0 not locked

Lock (L):

Put 1 in Register, R

Repeat

Atomic Swap (R, L)

Untill (R = = 0)

Unlock:

L = 0

41

Barrier synchronization

• A barrier synchronization between N threads can be implemented using a
shared variable initialized to N.

• When a processor reaches the barrier, it decrements the shared variable
by 1 and waits (in a busy wait loop) until the value of the variable is equal
to zero before it leaves the barrier.

• Need locks???

• What if there is no shared variables (distributed memory machines)?

• Can you synchronize using special hardware?

42

The Pthread API

• Pthreads has emerged as the standard threads API (Application
Programming Interface), supported by most vendors.

• The concepts discussed here are largely independent of the API
and can be used for programming with other thread APIs (NT
threads, Solaris threads, Java threads, etc.) as well.

• Provides two basic functions for specifying concurrency:

#include <pthread.h>

int pthread_create (pthread_t *thread_handle,
const pthread_attr_t *attribute,
void (*thread_function)(void *),
void *arg);

int pthread_join (pthread_t thread_handle,
void *ptr);

(see https://computing.llnl.gov/tutorials/pthreads/)

43

Mutual Exclusion

• Critical sections in Pthreads are implemented using mutex locks.

• Mutex-locks have two states: locked and unlocked. At any point of time,
only one thread can lock a mutex lock. A lock is an atomic operation.

• A thread entering a critical section first tries to get a lock. It goes ahead
when the lock is granted.

• The API provides the following functions for handling mutex-locks:

int pthread_mutex_lock (pthread_mutex_t *mutex_lock);

int pthread_mutex_unlock (pthread_mutex_t *mutex_lock);

int pthread_mutex_init (pthread_mutex_t *mutex_lock,

const pthread_mutexattr_t *lock_attr);
Can replace by NULL

44

An Example (compute)

The value of PI can be calculated in a number of ways.
Consider the following method of approximating PI:

• Inscribe a circle in a square

• Randomly generate points in the square

• Determine the number of points in the
square that are also in the circle

• Let Ac/As be the number of points in the
circle divided by the number of points in
the square

• PI 4 * (Ac/As)

• Note that the more points generated, the
better the approximation

45

An Example (compute)

#include <sys/time.h>

define MAX_THREADS 64

void *compute_pi (void *);

int total_hits, sample_points, sample_points_per_thread, num_threads;

main () {

…

}

void *compute_pi (void *s) {

…

}

main compute_pi

seed

hits

compute_pi

compute_pi

compute_pi

46

An Example (compute)

struct arg_to_thread {int t_seed ; int hits ;}

main (int argc, char argv[]) {

sample_points = atoi(argv[1]) ; /* first argument is the number of points */

num_threads = atoi(argv[2]) ; /* second argument is the number of threads*/

pthread_t p_threads[MAX_THREADS];

pthread_attr_t attr;

pthread_attr_init (&attr);

double computed_pi;

struct arg_to_thread my_arg[MAX_THREADS] ;

47

An Example (compute)

total_hits =0;

sample_points_per_thread = sample_points /num_threads;

for (int i=0; i< num_threads; i++){

my_arg[i].t_seed = i; /* can chose any seed – here i is chosen*/

pthread_create (&p_threads[i], &attr, compute_pi, &my_arg[i]);

}

for (i=0; i< num_threads; i++){

pthread_join (p_threads[i], NULL);

total_hits += my_arg[i].hits;

}

computed_pi = 4.0*(double) total_hits / ((double) (sample_points));

}

48

An Example (compute)

void *compute_pi (void *s) {
struct arg_to_thread *local_arg ;
int seed, i, local_hits ;
double rand_no_x, rand_no_y;

local_arg = s;
seed= (*local_arg).t_seed;
local_hits =0;
for (i=0 ; i<sample_points_per_thread ; i++) {

rand_no_x = (double) (rand_r (&seed))/(double) RAND_MAX ;
rand_no_y = (double) (rand_r (&seed))/(double) RAND_MAX ;
if (((rand_no_x - 0.5) *(rand_no_x - 0.5) +

(rand_no_y - 0.5) * (rand_no_y - 0.5)) <0.25)
local_hits ++; /* the generated sample is inside the circle*/

seed *= i;
}

(*local_arg).hits = local_hits;
pthread_exit (0);

}

Re-entrant function to generate a random
number between 0 and RAND_MAX

Need to compile with
“gcc -D_REENTRANT –lpthread”

(0,0)

(0.5,0.5)

2r = 1

49

An Example (compute)

void *compute_pi (void *s) {
struct arg_to_thread *local_arg ;
int seed, i, local_hits ;
double rand_no_x, rand_no_y;

local_arg = s;
seed= (*local_arg).t_seed;
local_hits =0;
for (i=0 ; i<sample_points_per_thread ; i++) {

rand_no_x = (double) (rand_r (&seed))/(double) RAND_MAX ;
rand_no_y = (double) (rand_r (&seed))/(double) RAND_MAX ;
if (((rand_no_x - 0.5) *(rand_no_x - 0.5) +

(rand_no_y - 0.5) * (rand_no_y - 0.5)) <0.25)
local_hits ++; /* the generated sample is inside the circle*/

seed *= i;
}

int pthread_mutex_lock (pthread_mutex_t *m_lock);
(*local_arg).hits = local_hits; total_hits =+ local_hits;

pthread_exit (0); int pthread_mutex_ulock (pthread_mutex_t *m_lock);
}

Re-entrent function to generate a random
number between 0 and RAND_MAX

Need to compile with
“gcc -D_REENTRANT –lpthread”

Allows the removal of “total_hits += my_arg[i].hits;” from main()

