L processor processor processor \Qn one Chlp
4 » N
/
: [! !
|\\ Cache Cache
N ~

\
v
'
e Cache)
/
Memory 1/0
[ERREESSNY processor [BREES processor processor processor
¢ ¢) ¢ ¢ ¢
Cache Cache Cache Cache Cache
L2 Cache

Memory 1/0

see Cache
L2 Cache
7 7
¢ J

26

Chip Multiprocessors

Shared L2 systems

Private L2 systems
5 L2 ||L2||L2 || L2

L

Memory controller

| System interconnect I
Memory controller
Memory system

Memory system
* Examples: Intel Pentium

* Examples: AMD Opteron

27

Example: The Sun Fire E25 K

http://www.sun.com/servers/highend/sunfire e25k/specs.xml

Interconnection Network (cross bars)

Mem. || Mem. || Mem. || Mem. Mem. || Mem. || Mem. || Mem.

= =

| L1/L2 ” L1/L2 || L1/L2 ” L1/L2 | o000 | L1/L2 ” L1/L2 || L1/L2 ” L1/L2 |

OCHONONO OCHONONO

* Board =4 SPARCS IV + 64 GB memory
* Up to 18 boards connected by crossbars
* 1.15 TB of Distributed shared memory

28

Thinking parallel

time
* The following computes the sum of
x[0]+...+x[15] serially: O x[0] =+ 16
O x[0] =+ 15
=+
For(i=1;i<16 ; i++) OX[O] 14

{ — O x[0] =+ 13
PR ETE

; :
=10+
* Takes n-1 steps to sum N numbers on one QX[O] 10+5
processor Q x[0] = 6+4
Q x[0] = 3+3
* Applies to associative and commutative Q X[0] =142

operations (+, *, min, max, ...)
29

Parallel sum algorithm (on 8 processors)

time * Takes log n steps to sum n

X[O]=36+100 numbers on p=Nn/2 processor

PO

X[0]1=10+26 X[8]=42+58
@X[O] 3+7 X[4] 11+15 X[8]=19+23 @ X[12]=27+31

\ '
Qm0000®6

x[4]= x[6] x[10]= x[12]= x[l4]=
X[OJ+x[1] x[21+x[3] X[4]+x[5] x[61+x[7] X[8+X[9] x[14]+x[15]
=142 =3+4 —5+6 —7+8 —9+10 =11+12 =13+14 =15+16
=3 =7 =11 =15 =19 =23 =27 =31 30

Example code on SMP

Should “half”
be private or
shared?

Pid is the

half=8; /* n=16 *
alf=8; /*n / processor ID

repeat {
if (Pid < half) x[Pid] = x[Pid] + x[Pid-+half];

F half = half/2;
s
until (half == 0);

Potential for race
conditions??

Processor 2

Processor 3

Processor] — I"

X[OJx[1 |X[2]x[3 X [4] X[5] x[6]X[7] x[SIX[O]x[10]x[1 1]x[12]x[13]x[14] x[15]]

Barrier |
synchronization Shared memory

31

Example: when p = 10 (not a power of 2)

n=20; half=n/2;
repeat
{
if (Pid < half) x[Pid] = x[Pid] + x[Pid+half];
if (N % 2 != 0 && Pid == 0) /*when n is odd; PO gets the last element */
x[0] =x[0] + x[n-1];
n = half ;
half = half/ 2;
barrier synch();
¥
until (half == 0);

| 0] ..., x[19] |

[Now, we want to sum n elements on p processors, N >>p }

32

Parallel sum of 16 elements on 4 processors

* Divide the array to be summed
into 4 parts and assign one part PO PL P2 P3
to each processor | | | | |

* Need 5 steps to sum 16 numbers ;0

on 4 processor
* Speedup= 15/5=3 36+100

* Need 255+2 steps to sum 1024

numbers on 4 processors
= Speedup = 1023/257=3.9

» How long does it take to sum n

numbers on p processors?
n—1 n

2+logp PO

= Speedup=57—""""=~
P P %—1+logp

=

Parallel sum on a shared address space machine

* Assume Xx[0] ... x[9999] are stored in shared memory.
* Assume P =16 processors, each with an identifier Pid (between 0 and 15)
* To sum the 10000 numbers, each processor executes the following:

sum[Pid] = 0;

for (i=625*Pid ;i< 625 *(Pid +1) ; i++)
sum[Pid] = sum[Pid] + x[i];

half=8; /*P=16*

for (i=0 ;i< 4; i++)

{'synchronize ; /* a barrier */
if(Pid < half) sum[Pid] = sum[Pid] + sum[Pid + half] ;
half = half / 2; }

* sum[] and x[] are shared arrays,

« half, Pid andi are private variables (each processor has its own copy).
* Where will the global sum end up being?

* What if we want all processors to get a copy of the global sum?

* How would you change the program if P is not a power of two?

* Rewrite the program in terms of the # of processors and the size of x?

34

EX: Computing the dot product on shared memory

Example: dot product of two vectors, x and y (using a single thread)

dp=0; x| |
for(i=0; i<n; i++) y| |
dp += x[i] * y[i]
dp]

Using 4 processors:

« Partition the arrays into 4 parts

» Each processor computes a partial sum
» One processor sums up the partial sums
(could use binary tree reduction)

35

Multi-thread version of the dot product example

+ Multi-threading was originally designed for Hiding Memory Latency
+ With multicores, multiple threads will execute on multiple cores

II'X[], Y[], pdp[] and dp = O are all declared shared variables

for (k =0; k < 4; k++) /* fork 4 threads */
create_thread (partial_product, k, n); /* kis used as a thread id */
Wait until all threads return ; /* join threads */
for (k =0; k< 4; k++)
dp += pdp[K] ; |

void partial_product (int k, int n);
{inti; [* private variable */
pdp[k] =0;
for (i=k*n/4; i< (k+1) *n/4; i++)
pdp[k] += x[i] * y[i] ;
return ;}

36

Another version of the dot product example

/I X[],y[l and dp = 0 are all declared shared variables

for (k=0; k< 4; kt+) Shared (global) variables
create_thread (partial_product, k , n); x| | | | |
Wait until all threads return ; \ \ \ \
yIA TN TN [N\
e

- _ dp []
void partial_product (k, n);
{linti, pdp=0; /* pdp is private -- each thread has its own copy */
for (i=k*n/4; i< (k+1) *n/4; i++)
I
pdp * X[I] y[l] ’ . .e--=="" load dp from memory
pd +=pdp ; Add pdp to dp
return; T ... store dp to memory

}

37

Synchronization (race conditions)

What is the output of the following program??

do=0; @
for (id = 0; id < 4; id++) /
create_thread (..., count, ...); dp ”/

void count ();

{ -~ load dp from memory
dp=dp+1; Add 1 to dp
} “--.store dp to memory

» A critical section is a section of code that can be executed by one
processor at a time (to guarantee mutual exclusion)
» locks can be used to enforce mutual exclusion

Most parallel languages
provide ways to declare and
use locks and/or critical sections

get the lock ;
dp=dp+1;
release the lock ;

Mutual Exclusion

» We need mutual exclusion in both parallel and serial programs (why?)

» Locks can be used to allow mutual exclusion, and hence provide a
mechanism for exclusive access to shared data.

» Hardware support (in the form of atomic operations) is needed to implement
locks

— Atomic load-modify-store instructions,

— Atomic swap instructions (swap the contents of a memory location with
that of a register).

* In cache coherent systems, a cached
memory location should be in the “Exclusive” o
cache

state while executing an atomic operation on pd=0

pd=0

this location.

pd=0

cache memory

39

Implementing locks using atomic swap

+ Atomic Swap interchanges a value in a register for a value in memory
* loads the value from a memory location into the register
* stores the value in register into the memory location

+ Atomic swap can be used to implement locks:

» The lock is represented by a variable, L
L=1 - locked
L=0 - not locked

/Lock (L): \

Put 1 in Register, R
Repeat

Atomic Swap (R, L)
Untill (R==0)

Unlock:

N %

40

Barrier synchronization

» A barrier synchronization between N threads can be implemented using a
shared variable initialized to N.

* When a processor reaches the barrier, it decrements the shared variable
by 1 and waits (in a busy wait loop) until the value of the variable is equal
to zero before it leaves the barrier.

* Need locks???
» What if there is no shared variables (distributed memory machines)?

» Can you synchronize using special hardware?

41

The Pthread API

(see https://computing.linl.gov/tutorials/pthreads/)

+ Pthreads has emerged as the standard threads API (Application
Programming Interface), supported by most vendors.

» The concepts discussed here are largely independent of the API
and can be used for programming with other thread APIs (NT
threads, Solaris threads, Java threads, etc.) as well.

« Provides two basic functions for specifying concurrency:
#include <pthread.h>

int pthread_create (pthread_t *thread_handle,
const pthread_attr_t *attribute,
void (*thread_function)(void *),
void *arg);

int pthread_join (pthread_t thread_handle,
void *ptr);
P 42

Mutual Exclusion

» Critical sections in Pthreads are implemented using mutex locks.

» Mutex-locks have two states: locked and unlocked. At any point of time,
only one thread can lock a mutex lock. A lock is an atomic operation.

» Athread entering a critical section first tries to get a lock. It goes ahead
when the lock is granted.

* The API provides the following functions for handling mutex-locks:
int pthread_mutex_lock (pthread_mutex_t *mutex_lock);
int pthread_mutex_unlock (pthread_mutex_t *mutex_lock);

int pthread_mutex_init (pthread_mutex_t *mutex_lock,

const pthread_mutexattr _t *lock attr);

Can replace by NULL

43

An Example (compute r)

The value of PI can be calculated in a number of ways.
Consider the following method of approximating PI:

f 2r |

* Inscribe a circle in a square
* Randomly generate points in the square

* Determine the number of points in the
square that are also in the circle

* Let A /A, be the number of points in the
circle divided by the number of points in
the square

« Pl~4*(AJA)

* Note that the more points generated, the
better the approximation

{(2r)? = 4r2?
nr?

ey
o

4 —
*

44

An Example (compute r)

#include <sys/time.h>
define MAX_THREADS 64
void *compute_pi (void *);

int total_hits, sample_points, sample_points_per_thread, num_threads;

main () { m

-

void *compute_pi (void *s) { L_c_o_nl]zlit_e__!)i ~
} I compute_pi
I compute_pi

An Example (compute r)

struct arg_to_thread {intt_seed ; int hits ;}
main (int argc, char argv[]) {

sample_points = atoi(argv[1]) ; /* first argument is the number of points */
num_threads = atoi(argv[2]) ; /* second argument is the number of threads®*/

pthread_t p_threads|]MAX_THREADS];
pthread_attr t attr;

pthread_attr_init (&attr);

double computed_pi;

struct arg_to_thread my_arg[MAX_THREADS] ;

46

An Example (compute r)

total_hits =0;
sample_points_per_thread = sample_points /num_threads;

for (int i=0; i< num_threads; i++){
my_arg[i].t_seed =i; [* can chose any seed — here i is chosen*/
pthread_create (&p_threadsi], &attr, compute_pi, &my_arg[i]);

for (i=0; i< num_threads; i++){
pthread_join (p_threads]i], NULL);
total_hits += my_arg([i].hits;

computed_pi = 4.0*(double) total_hits / ((double) (sample_points));

47

An Example (compute r)

void *compute_pi (void *s) {
struct arg_to_thread *local_arg ;
int seed, i, local_hits ;
double rand_no_x, rand_no_y;

Re-entrant function to generate a random
number between 0 and RAND MAX
Need to compile with
“gee -D_REENTRANT —Ipthread”

local_arg = s;
seed= (*local_arg).t_seed;
local_hits =0;
for (i=0 ; i<sample_points_per_thread; i++) {
rand_no_x = (double) (rand_r (&seed))/(double) RAND_MAX ;
rand_no_y = (double) (rand_r (&seed))/(double) RAND_MAX ;
if (((rand_no_x - 0.5) *(rand_no_x - 0.5) +
(rand_no_y - 0.5) * (rand_no_y - 0.5)) <0.25)
local_hits ++; /* the generated sample is inside the circle*/
seed *=i;
} (0.5,0.5)

(*local_arg).hits = local_hits; / \
pthread_exit (0);

! "

48

An Example (compute r)

void *compute_pi (void *s) {
struct arg_to_thread *local_arg ;
int seed, i, local_hits ;
double rand_no_x, rand_no_y;

Re-entrent function to generate a random
number between 0 and RAND MAX
Need to compile with
“gee -D_REENTRANT —Ipthread”

local_arg = s;
seed= (*local_arg).t_seed;
local_hits =0;
for (i=0 ; i<sample_points_per_thread; i++) {
rand_no_x = (double) (rand_r (&seed))/(double) RAND_MAX ;
rand_no_y = (double) (rand_r (&seed))/(double) RAND_MAX ;
if (((rand_no_x - 0.5) *(rand_no_x - 0.5) +
(rand_no_y - 0.5) * (rand_no_y - 0.5)) <0.25)

local_hits ++; /* the generated sample is inside the circle*/
seed *=i;
/ int pthread_mutex_lock (pthread_mutex_t *m_lock);
* — -hits—= —hitsi— |total_hits =+ local_hits;
pthread_exit (0); \ int pthread_mutex_ulock (pthread_mutex_t *m_lock);

| Allows the removal of “total hits += my arg[i].hits;” from main() | 49

