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Flynn’s hardware taxonomy (Section 6.3)

S
MI

S
M D

• S for single
• M for multiple

• SISD is a sequential computer.

• SIMD: one stream of instructions applied to multiple data.

• MIMD: multiple streams of instructions executing on multiple data. 

• MISD – need to be innovative to define it.

• I for instruction
• D for data.

Looks at instructions and data parallelism.  Oldest (1960’s) 
and best known of many taxonomy proposals.
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MIMD

PE0

data

PE1 PE2 PE3

Multiple programs/threads executing on different data – However, if all PEs 
(processing elements) are to cooperate to solve the problem (as opposed to 
solving different problems), there should be interaction between the PEs.

Instruction 
stream

data data data

Instruction 
stream

Instruction 
stream

Instruction 
stream

Shared address space Vs separate address spaces  (an architecture concept)
– The address space of an instruction stream executing on a processor consists of 

the “virtual” memory addresses that can be accessed from lw/sw instructions.

– Two instruction streams that do not share a memory address space can share 
information through message passing.



15

MIMD

• Virtual addresses are mapped to physical memory locations

– The hardware memory system may have shared physical memory modules or 
distributed physical memory modules

– Can have shared virtual address spaces on either a shared or distributed 
physical memory (same applies to separate virtual address spaces)

• Uniform memory access, UMA Vs Non-uniform memory access, NUMA

– Does the delay for accessing a memory location depend on its address?.

• Shared memory programming Vs distributed memory programming

– Variables can be shared (global)  shared memory programming 

– Variables are private (local)  distributed memory programming 

– Shared memory programming allows private as well as shared variables

Interconnection

Cache

processor

Memory

Cache

processor

Memory

Cache

processor

Memory

Cache

processor

interconnection

Memory I/O

Cache

processor

Cache

processor

Memory . . .
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The concept of SPMD

PE0

data

PE1 PE2 PE3

ldpid r1
multi r1, r1, 4
lw r2, 100(r1)
addi, r2, 1
sw r2, 200(r1)

data data data

ldpid r1
multi r1, r1, 4
lw r2, 100(r1)
addi, r2, 1
sw r2, 200(r1)

ldpid r1
multi r1, r1, 4
lw r2, 100(r1)
addi, r2, 1
sw r2, 200(r1)

ldpid r1
multi r1, r1, 4
lw r2, 100(r1)
addi, r2, 1
sw r2, 200(r1)

• The concept of single Program Multiple Data (SPMD):

(applies to both distributed memory and shared memory MIMD programming)

– User writes one program to be executed by all processors (threads).

– How do you make the program do different things?

Load 
process 

id
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lw r2, 100($0)
addi, r2, 1
sw r2, 100($0)

PE0

100

PE0’s address space

lw r2, 100($0)
addi, r2, 1
sw r2, 100($0)

PE1

100

PE1’s address space

lw r2, 100($0)
addi, r2, 1
sw r2, 100($0)

PE2

100

PE2’s address space

lw r2, 100($0)
addi, r2, 1
sw r2, 100($0)

PE3

100

PE3’s address space

Shared Vs distributed address space

100

Shared address space

104 108 112

PE0 PE1 PE2 PE3

ldpid r1
multi  r1, r1, 4
lw r2, 100(r1)
addi, r2, 1
sw r2, 100(r1)

ldpid r1
multi  r1, r1, 4
lw r2, 100(r1)
addi, r2, 1
sw r2, 100(r1)

ldpid r1
multi  r1, r1, 4
lw r2, 100(r1)
addi, r2, 1
sw r2, 100(r1)

ldpid r1
multi  r1, r1, 4
lw r2, 100(r1)
addi, r2, 1
sw r2, 100(r1)

Load 
process 

id
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int x ;
x = x+1 ;

PE0

x

PE0’s private variables

PE1 PE2 PE3

Programming with private and shared (global) variables

x

PE1’s private variables

x

PE2’s private variables

x

PE3’s private variables

int x ;
x = x+1 ;

int x ;
x = x+1 ;

int x ;
x = x+1 ;

shared *int x ;
x[pid] = x[pid]+1

x[ ]

Shared variables

PE0 PE1 PE2 PE3

shared *int x ;
x[pid] = x[pid]+1

shared *int x ;
x[pid] = x[pid]+1

shared *int x ;
x[pid] = x[pid]+1

/*pid = 0 */ /*pid = 1 */ /*pid = 2 */ /*pid = 3 */

Note: in languages that allow shared variables, a variable not declared “shared” is private
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SIMD (two flavors)

1) Synchronous, lockstep execution
PE PE PE PE

control

ldpid r1
multi  r1, r1, 4
lw r2, 100(r1)
addi,  r2, 1
sw r2, 200(r1)

2) Vector processing

PEcontrolprogram

data

All PEs execute the same 
instructions on different data

The same instruction is 
repeatedly executed on 
different data

program

data data data data
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Vector Processors

Significantly reduces instruction fetch and execution time

32 vector register ($v0, … , $v31) 
each holds a vector of 64 values, 
each being a floating point value

• Example: Vector extension to MIPS

– The usual 32 integer registers ($0, … , $31)

– 32 floating point registers ($f0, … , $f31)

– 32 vector registers ($v0, … , $v31)

• Can move vectors from/to memory

– lv  an instruction to load a vector of data 
from memory into a vector registers 

– sv an instruction to store a vector from 
a vector register to memory

• Vector instructions to stream data from 
vector registers to highly pipelined 
functional units

– addv.d  add two vectors

– addvs.d add a scalar to each element 
of a vector
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EX: compute  𝒚 𝒊 𝒂 ∗ 𝒙 𝒊 𝒚 𝒊 , 𝒊 𝟎, … , 𝟔𝟑

• Conventional MIPS code (assuming 64-bit architecture, i.e. a word = 8 bytes).

l.d $f0,0($sp)     ;load scalar a to $f0
addi $s2,$s0,512    ;64 elements (64*8=512 bytes)

loop: l.d $f2,0($s0)     ;load x(i) into $f2
mul.d $f2,$f2,$f0    ;multiply a and x(i)
l.d $f4,0($s1)     ;load y(i) into $f4
add.d $f4,$f4,$f2    ;add y(i) to a x(i)
s.d $f4,0($s1)     ;store back into y(i)
addi $s0,$s0,8      ;increment index to x
addi $s1,$s1,8      ;increment index to y
subu $t0,$s2,$s0    ;# of elements left to process
bne $t0,$zero,loop ;loop if not done

• Vector MIPS code

l.d $f0,0($sp)   ;load scalar a to $f0
lv      $v1,0($s0)   ;load vector x (64 values) to $v1
mulvs.d $v2,$v1,$f0  ;multiply vector x by scalar a
lv      $v3,0($s1)   ;load vector y (64 values) to $v3
addv.d $v4,$v2,$v3  ;add two vectors
sv $v4,0($s1)   ;store back the result vector

22

Using multiple Lanes

Instead of using one pipelined functional unit for all the vector elements, 

multiple units can be used, in parallel.

EXAMPLE: 4 pipeline units can be used, each operating on 1/4th of the vector
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Hardware Multi-threading  (Sec. 6.4)

• Software-based thread context switching (Posix Threads)

– Hardware traps on a long-latency operation

– Software saves the context of the current thread, puts it on hold and starts the 
execution of another ready thread

– Relatively large overhead (saving old context and loading new context)

– Context = registers, PC, stack pointer, pointer to root page table, …. 

• Hardware-based multithreading 

– Threads = user defined threads or compiler generated threads

– Replicate registers (including PC and stack pointer)

– Hardware-based thread-context switching (fast)

• Example: IBM Power5 and Pentium-4 supports hardware-based multi-
threading
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PC Register file

Scheduling multiple threads

• Fine-grain multithreading
– Switch threads after each cycle
– Interleave instruction execution
– If one thread stalls, others are executed

• Coarse-grain multithreading
– Only switch on long stall (e.g., L2-cache miss)
– Simplifies hardware, but doesn’t hide short stalls (eg, data hazards)

• SMT – Simultaneous Multi Threading
– Schedule instructions from multiple threads
– Instructions from independent threads execute when ready
– Dependencies within each thread are handled separately

Instruction
cache

Add Pipeline 1 

Add Pipeline 2

Multiply Pipeline 1

Multiply Pipeline 2

4 register files, one 
for each thread

RF1 RF2 RF3 RF4

PC1

PC2

PC3

PC4

4 program counters, 
one for each thread Multiple pipelines 

Load/store Pipeline
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SMT Examples

This example assumes a 
4-issue pipeline (can issue 
as many as 4 instructions 
every cycle)

Single thread execution

Multithread execution


