
 1

CS/CoE 1541 – Exam 1 (Spring 2019). Name: _____________________________

Question 1 (8+2+2+3=15 points): In this problem, consider the execution of the following code
segment on a 5-stage pipeline with forwarding/stalling hardware and branches resolved in ID. Assume
that the loop I2-I5 in the following code executes 1000 times (branches are not delayed branches).

 I1: sub $3, $0, $0
 I2: lw $1, 0($2)
 I3: add $3, $3, $1
 I4: addi $2, $2, 4
 I5: bneq $5, $2, I2 /*branch to I2 if contents of $5 and $2 are not equal*/
 I6: sw $3, 0($2)

(a) Complete the following trace for the execution of the above code (up to cycle 15) assuming no

branch prediction (that is always predicting that a branch is not taken).

 IF ID EX MEM WB
Cycle 1 sub
Cycle 2 lw sub
Cycle 3 add lw sub
Cycle 4 addi add lw sub
Cycle 5 addi add lw sub
Cycle 6 bneq addi add lw
Cycle 7 sw bneq addi add
Cycle 8 lw bneq addi add
Cycle 9 add lw bneq addi
Cycle 10 add lw bneq
Cycle 11 addi add lw
Cycle 12 bneq addi add lw
Cycle 13 sw bneq addi add
Cycle 14 lw bneq addi add

(b) How many cycles would it take to complete the execution of the 1000 iterations of the loop (4000

instructions) – still assuming no branch prediction?

6000

(c) What would be the CPI while executing the loop (with no branch prediction)?

6000/4000 = 1.5

(d) What would be the CPI while executing the loop is we assume a perfect branch predictor?

5000/4000 = 1.25

 2

Question 2 (7+5+4+4=20 points): Consider the execution of the following code on the shown five
stage pipeline and assume that at the beginning of cycle 1, the PC contains the address FA00:

FA00: add $3, $2, $1 /* See last page of exam bulletin for */
FA04: lw $5, $4(120) /* MIPS machine instruction formats */
FA08: sw $1, $3(120)
FA0B: sub $6, $7, $8
FA10: beq $2, $6, FA80

a) Specify the values of the following pipeline buffer registers at the beginning of cycle 5 (when the

add instruction is in MEM/WB. Use X if the value cannot be determined and is inconsequential.

PC: FA10 IF/ID.Rs: 7 ID/EX.Rs: 3 EX/MEM.Rd: 5 MEM/WB.Rd: 3
 IF/ID.Rt: 8 ID/EX.Rt: 1
 IF/ID.Rd: 6 ID/EX.Rd: X

b) Specify the values of the following control signals at the beginning of cycle 5:

ID/EX.RegWrite: 0 EX/MEM.RegWrite: 1 MEM/WB.RegWrite: 1
ID/EX.MemWrite: 1 EX/MEM.MemWrite: 0
ID/EX.MemRead: 0 EX/MEM.MemRead: 1

c) Specify the values of the signals controlling the forwarding muxes at the beginning of cycle 5:

 Signal A: 1 Signal B: 0

d) Assuming that at cycle 1, registers 1, 2, 3 and 4 contain the decimal values 100, 200, 300 and 400,
respectively, specify (in decimal) the content of the following registers at the beginning of cycle 5
(again use X if the value cannot be determine)?

EX/MEM.RA: 400+120 = 520 MEM/WB.RA: 100+200=300

 3

Question 3 (2.5*6=15 points): Consider a 5-stage pipeline with the following forwarding paths:
 F1 between the MEM/WB inter-stage buffer and the input of the EX stage and,
 F2 between the EX/MEM inter-stage buffer and the input of the EX stage.

(a) For each of the following five code segments, identify which of the statements (i), (ii), (iii), (iv) or

(v) applies? Indicate your answer by circling the correct answer for each segment.
(i) The data hazard is completely resolved by F1
(ii) The data hazard is completely resolved by F2
(iii) The data hazard is resolved by stalling the pipeline and then using F1
(iv) The data hazard is resolved by stalling the pipeline and then using F2
(v) There is no data hazard.

Segment 1: add r1, r2, r3 (i) (ii) (iii) (iv) (v)

sub r4, r1, r2
beq r2, r3, L

Segment 2: lw r1, 300(r2) (i) (ii) (iii) (iv) (v)

sub r4, r1, r2
add r5, r1, r2

Segment 3: sw r2, 304(r1) (i) (ii) (iii) (iv) (v)

add r1, r2, r3
sw r2, 300(r3)

Segment 4: add r1, r2, r3 (i) (ii) (iii) (iv) (v)

lw r3, r6(100)
sub r4, r1, r2

Segment 5: lw r1, 300(r2) (i) (ii) (iii) (iv) (v)

add r2, r6, r7
sub r4, r1, r3

(b) Give an example of a short code segment (2 or 3 instructions

similar to the ones in part a) which can utilize a forwarding
path from the MEM/WB inter-stage buffer to the input of the
MEM stage (shown in the figure).

lw r1, r2(100)
sw r1, r2(100)

EX/MEM MEM/WB

Data
Memory

F1
F2

ID/EX

 4

Question 4 (5*3 = 15 points): Consider a pipelined CPU with 6-stages (IF, ID, EX1, EX2, MEM,
WB) with branch conditions and target addresses being resolved in the EX2 stage. The delays for the
six stages are 1.7, 1.9, 1.8, 2.0, 1.7 and 2.0 ns respectively. Assume that, on average, 30% of the
instructions executed on this architecture are load/store instructions and 20% are branch instructions
with 30% of the executed branches taken. The CPI of the architecture is 3.0 if the stalls due to control
hazards are ignored.

(a) What is the CPI for the architecture when stalls due to control hazards are included?

- CPIa = 3.0 + 0.2 * 0.3 * 3 = 3.18

(b) Repeat part (a) if the architecture is modified such that the logic for calculating the branch target

and address is moved from EX2 to ID. This modification, however, will increase the delay of the
ID stage from 1.9 to 2.1 ns and reduce the delay of the EX2 stage from 2.0 to 1.8 ns.

- CPIb = 3.0 + 0.2 * 0.3 * 1 = 3.06

(c) Repeat part (a) if branches are resolved in EX2 but hardware for branch prediction is added to IF

resulting in a 90% prediction accuracy. That is, after a branch, the correct instruction is fetched
90% of the time and the wrong instruction 10% of the time. The branch predictor will increase the
delay of the IF stage from 1.7 to 1.9 nanoseconds.

- CPIc = 3.0 + 0.2 * 0.1 * 3 = 3.06

(d) What is the cycle time for each of the above three architectures?

- Ta = the cycle time for the original architecture = 2.0

- Tb = the cycle time when branch resolution is moved to ID as described in (b) = 2.1

- Tc = the cycle time when a branch predictor is added as described in (c) = 2.0

(e) How would you determine which of the three architectures is the most efficient?

The one with the smallest value of CPI * T is the most efficient
In this case, it is the architecture of part c

 5

Question 5 (5*3 = 15 points): In this question, you will explore changing the MIPS ISA so that
lw/sw instructions do not use an immediate constant. That is, the memory address is found in the
register without the capability of adding a constant (this is called register indirect addressing). With
this modification, it is possible to have a 4-stage pipeline by merging the EX and MEM stages into
one stage (call it EX+M), as shown in the figure below.

The advantage of the 4-stage pipeline is that forwarding completely eliminates data hazards. Its
disadvantage is that the number of executed instructions in a program increases by 10% because
each instruction of the form “lw $r1, I($r2)” has to be replaced by two instructions (“addi $r2, $r2,
I” followed by “lw $r1, $r2”) and each instruction of the form “sw $r1, I($r2)” has to be replaced by
two instructions (“addi $r2, $r2, I” followed by “sw $r1, $r2”).

(a) Assume that it takes 90ps to read from
the register file, 90ps to write into the
register file and 200ps to fetch or store
into memory (instruction or data).
Assume also that the Adder and ALU
delays are 150ps and 240ps,
respectively and ignore all other delays.
What is the minimum cycle time for
this 4-stage pipeline?

240

(b) To compare the performance of the 4-stage pipeline with the original 5-stage pipeline, we assume
that both have the same cycle time, use forwarding and resolve branches in the EX stage.

a. Given that the CPI for the 5-stage pipeline is 2.05 and that the probability of a load-use data
hazard in the 5-stage pipeline is 5% (the probability that an instruction is a lw instruction that
loads into a register R and that this lw instruction is immediately followed by an instruction
which reads from R). Compute the CPI of the 4-stage pipeline.

CPI5-stage = 2.05

CPI4-stage = 2.05 – 0.05 * 1 = 2

(c) Which pipeline would be more efficient? – should quantitatively support your answer

 Clock cycles to complete for 5 stage = CPI * # of instructions = 2.05 X
Clock cycles to complete for 4 stage = CPI * # of instructions = 2.0 * 1.1X =2.2X

 6

Question 6 (8+4+3=15 points): Consider the scheduling of the following loop on a superscalar
architecture with two pipelines, one for ALU/branch instructions and the other for lw/sw instructions.

L1: lw $t0, 1000($s4)
L2: addi $s1, $s1, 1
L3: lw $t1, 1004($s4)
L4: addi $s5, $t1, 4
L5: add $t0, $t0, $s1
L6: sw $s1, 5000($s4)
L7: beq $s4, $s6, L

a) Show the scheduling of one iteration of the loop assuming that the architecture has forwarding and

stalling hardware but that the compiler does not reorder the instructions:

ALU/branch pipeline Load/store pipeline
addi lw Cycle 1

 lw Cycle 2
 Cycle 3

addi …
add sw …
beq …

 …
 …

b) It is possible to improve the efficiency of the code on the superscalar (without affecting the
correctness of the code) by reordering the instructions. Specifically, by moving instruction
L_5_ to the position between L_3_ and L_4__.

c) Show the pipeline schedule after you reorder the instructions as specified in part b.

ALU/branch pipeline Load/store pipeline

addi lw Cycle 1
 lw Cycle 2

add Cycle 3
addi sw …
beq …

 …
 …
 …

 7

The following slide (from lecture 1) shows the machine instruction formats for the
three types of instructions:

Rtype rd, rs, rt

I-type rt, rs (I)

J-type L

