
1

CS/COE1541: Introduction to
Computer Architecture

Dept. of Computer Science
University of Pittsburgh

http://www.cs.pitt.edu/~melhem/courses/1541p/index.html

Chapter 5: Exploiting the Memory Hierarchy
Lecture 7: More on Virtual Memory

Lecturer: Rami Melhem

2

Translation Lookaside Buffer (TLB) to cache the page table

Physical
Memory

Page table
for process 1

Page table
for process n

Page table
for process i

CPU
Executing
Process i

Virtual
memory
address

TLB caches few
entries of the page
table of process i

0
1
1
0
1
1
0

1
0
1
0
0
1
0

1
0
1
0
1
0
1

1
1

Physical
memory
address

TLB

3

Caching the page table in a TLB

Physical
Memory

Page table
for process 1

Page table
for process n

Page table
for process i

CPU
Executing
Process 1

0
1
1
0
1
1
0

1
0
1
0
0
1
0

1
0
1
0
1
0
1

TLB
1
1

TLB caches a few
entries of the page
table of process 1

Virtual
memory
address

Physical
memory
address

With TLB, we avoid
accessing memory
twice on each memory
reference?

4

Caching the page table into the TLB

Physical memory
(10 pages)

Valid
1

0

1

1

0

1

1

0

1

1

0

1

Page table (PT)

0

1

2

3

4

5

6

7

8

9

TLB

00000 (0)
00001 (1)
00010 (2)
00011 (3)
00100 (4)
00101 (5)
00110 (6)
00111 (7)
01000 (8)
01001 (9)
01010 (10)
01011 (11)

11111 (31)

0

1

Example:
- 32-pages virtual mem
- 32-entry Page Table
- 4-entries TLB,
- Fully associative
- 1 entry caching

granularity

Valid tag

010011
000101

001011

Disk storage
(swap space)

If page table entry is not in TLB:
• TLB miss
• get the entry from the page table (PT walk)
• load it to the TLB.
• may have to replace a valid TLB entry

00
01
10
11

5

Caching the page table into the TLB

Physical memory

Disk storage
(swap space)

Valid
1

0

1

1

0

1

1

0

1

1

0

1

Page table

0

1

2

3

4

5

6

7

8

9

TLB

00000 (0)
00001 (1)
00010 (2)
00011 (3)
00100 (4)
00101 (5)
00110 (6)
00111 (7)
01000 (8)
01001 (9)
01010 (10)
01011 (11)

11111 (31)

0

1

Example:
- 4-entries TLB,
- direct mapped
- 1 entry caching

granularity

Valid tag
0101 0001

0011
00
01
10
11

6

00110 00 (24)
0

Example

x x x x x x x z z z z

Page # Page offset

Virtual word address

1 010

1 110

00000 11 (3)

1 101

1 000

Page table (128 entries)

valid
Physical
Page #

y y y z z z z

Page # Page offset

Physical word address

translate

Ex: Consider references to locations:
0011000 0101 (page 24)
1000011 0111 (page 67)
1011000 0001 (page 88)
0011001 0011 (page 25)

Virtual space = 128 pages
Page = 16 words

Page 3

Page 24

Page 67

Page 88

Page 67
Page 24

Page 3

Page 88

Physical memory = 8 pages
Page = 16 words

000

001

010

011

100

101

110

111

1 00110 110
0
0
1 10000 101

tag
Physical
Page #

TLB
4 entries

Direct mapping

valid

00
01
10
11

 110 0101
 101 0111
 TLB miss
 TLB miss +

Page fault

10000 11 (67)

10110 00 (88)

00110 01 (25)

7

The Page Table (PT) is very large

The PT is too large to be stored in
physical memory

Example: If VS = 32-bit address (4GBytes) and memory page size = 4KB

 VS = 1 million pages, page table = 1 Million entry.
 if each table entry = 4 bytes page table occupies 4MB
 page table occupies 1024 memory pages (memory page size =4KB)

Physical Memory

Virtual page
number

Page
offset

PT address
register

+

Physical address

TLB
Page table

Page table

Virtual space

8

PT address
register

The Page Table (PT) is very large

Virtual page
number

Page
offset

PT
Base Register

Physical address

TLB

Page table

Memory
Virtual space

• The PT is stored in 1024 pages of the virtual memory space.
• PT’s currently used pages are brought to memory, and like any other page in the

virtual space, the location of a page in memory is recorded in PT
• Note that the 1024 PT entries corresponding to the pages of the PT can fit in the

first page of the PT – That page is pinned in memory.

Pinned in memPT
walker

• On a TLB miss, a “PT walker” is invoked
to bring the missing PT entry to the TLB.

• The PT address register is replaced by a PT
base address register which points to the
first page of PT (pinned in memory)

9

Multi level Page Tables (multi level PT)

PT stored in 1024
pages containing a
million PT entries

• In the example of 4GB VS and 4KB pages, the PT can be stored in 1024 pages
• Pages of the PT are brought to memory on demand
• The first page (root) of the PT keeps track of the locations of PT pages in memory.

• This is a “2-level” PT organization – may generalize to a multi-level PT organization
• Memory foot-print = the part of the VS which is actually used (accessed)

• A large number of pages in the VS are not allocated or used (empty).
• Hence a large number of entries of the PT are never accessed

First page (root)
of PT is pinned
in memory

Only a few of the 1024 PT
pages are used

PT pages with
entries for the
pages of the
memory foot-
print

A multi-level PT
(tree structure)

pinned

10

Alpha 21264 example (3-levels page tables)

Ptr to level 2

Ptr to level 3

(48 bits)

Base
register

11

TLB
Physical
address

The whole picture

CPU

Virtual page
number Page offset

Virtual address from
lw/sw instructions or
from program counter
(PC)

Physical
Memory

Part of the
Page table

- If cache miss process stalls (pipeline stalls)
- If TLB miss process stalls (pipeline stalls)
- If Page fault process relinquishes the CPU

Virtual
Address

space

Page table

page

page

page

The OS is invoked to move a page
from disk (where virtual pages
reside) to physical memory

Page fault
handler

Page fault

Cache

Block of
a page

Page table
walker

TLB-miss

Bring page table
entry to the TLB

page

page

Data

12

Virtual page
number

Page offset

TLB
Physical
address

Cache
To memory

TLBs and caches

• Page table walk to get the PT
entry into the TLB (hardware)

• If PT indicates that page is not
in memory, then service page
fault (software – OS)

Note that there cannot be a page
fault in case of a TLB hit – there
is no reason for the PT entry of a
page to be in the TLB if the page
is not in memory

Assumes a
write through
cache

Some pages in the VS cannot be
accessed if executing in user mode.
“Access bits” in the PT entry for
these pages are used to impose the
appropriate protection.

13

2-Level TLB Organization for Cortex-A8 and Core-i7

