
1

CS/COE1541: Introduction to
Computer Architecture

Dept. of Computer Science
University of Pittsburgh

http://www.cs.pitt.edu/~melhem/courses/1541p/index.html

Chapter 5: Exploiting the Memory Hierarchy
Lecture 6: Virtual Memory

Lecturer: Rami Melhem

2

Virtual Memory (section 5.7)

• Advantages:
1) illusion of having more memory than what can fit in the physical

memory

Virtual addresses
(generated by the CPU)

Main memory can act as a cache for the secondary storage (ex. disk)

Disk storage contains the
virtual address space

Physical memory (size
depends on installed
memory) -- Caches part
of the virtual space.

physical addresses space

Size of the virtual space is
232 bytes (4GB) in 32-bit
machines (ex. MIPS).

In other architectures, the
virtual address space may
be 248 bytes.

Space not utilized

3

Virtual Memory

• Advantages:
2) More than one process can share the same physical memory
3) Allows page sharing among processors

Virtual addresses
for process 1

Virtual addresses
for process 2

Some pages belong to process 2

Physical memory

Some pages belong to process 1

Some pages are shared

4

Physical memory as a cache for the virtual memory

• Block (page) size = 1KB ~ 64KB (large because of huge miss penalty)

– (as opposed to16B~64B in L1/L2)

• Miss penalty (cost of a page fault) = 1M~10M cycles (to access hard drive)

– (as opposed to 20~150 cycles (L2/memory)

• Hit time = 50 ~ 150 cycles

– (as opposed to1~3 in L1 and 6~12 in L2)

• Miss rate = 0.00001~0.001% (called page fault rate)

– (as opposed to 0.1~10% in L1)

• Always write back (never write through)

– (always write back in L2, and commonly in L1)

• Fully associative (to maximize hit rate)

– (as opposed to 4-8 way set associative in L1/L2)

• Replacement implemented in OS

– (as opposed to hardware implementation for L1/L2)

• Locate pages using page tables

– (efficient way to implement full associativity)

5

Address translation through Page Tables

Physical memory
(10 pages)

Virtual memory
(12 pages)

• Table lookup replaces tag comparison in L1/L2.

Valid

Page table
(12 entries)

0

1

2

3

4

5

6

7

8

9

10

11

0

1

2

3

4

5

6

7

8

9

1

6

Address translation through Page Tables

Physical memory

Virtual memory

• Table lookup replaces tag comparison in L1/L2.

Disk storage
(swap space)

Valid
1

0

1

1

0

1

1

0

1

1

0

1

Page table

0

1

2

3

4

5

6

7

8

9

10

11

0

1

2

3

4

5

6

7

8

9

7

Page table register

31 30 29 28 27 15 14 13 12 11 10 9 8 3 2 1 0
Virtual address

Virtual page number page offset

29 28 27 15 14 13 12 11 10 9 8 3 2 1 0

Physical page number page offset

Physical address

20
12

Page table

3 2 1 01110 9 815 14 13 1231 30 29 28 27
Virtual address

Virtual page number page offset

3 2 1 01110 9 815 14 13 1229 28 27

Physical page number page offset

Physical address
(# of bits depends on the size of the physical memory)

1 GByte memory (230) 30-bits address

Virtual to physical address translation

In this example, the physical memory is 1/4 the size of the virtual address space.

18

page table

Physical page numberValid

If 0 then page is not in
memory (Page Fault)

The page table is stored in memory starting at the address stored
in the “Page Table Register”

Assume 4KB pages (212 bytes)

8

The Page Table is allocated in memory

• Each process has its own page table stored in memory starting at a specific
address indicated in a page address register.

• A memory reference (if hits in main memory) requires two memory operations
• A page fault (main memory miss) results in a disk operation.
• The page table and page address register are part of the process context (along

with the PC, stack pointer, registers …)

Memory

Page table

Virtual page
number

Page
offset Page address

register

+

Physical address

9

Example of address translation

Virtual space = 128 pages
Page = 16 words

Page 3

Page 24

Page 67

Page 88

Page 67
Page 24

Page 3

Page 88

Physical memory = 8 pages
Page = 16 words

000 (0)

001 (1)

010 (2)

011 (3)

100 (4)

101 (5)

110 (6)

111 (7)

x x x x x x x z z z z

Virtual Page #
(7 bits)

Page offset
(4 bits)

Virtual word address

y y y z z z z

Physical Page #
(3 bits)

Page offset
(4 bits)

Physical word addresstranslate

Examples:

reference to
0011000 0101 (page 24),
translates to
110 0101

reference to
0011001 0011 (page 25)
causes a page fault

0 ----

1 010(2)

1 110 (6)

0000011 (3)

1 101 (5)

1 000 (0)

Page table (128 entries)

0011000 (24)

1000011 (67)

1011000 (88)

valid
Physical
Page #

0011001 (25)

10

Multiple processes share the physical memory

Physical
Memory

Page table
for process 1

Page table
for process n

Page table
for process i

CPU
Executing
Process i

0
1
1
0
1
1
0

1
0
1
0
0
1
0

1
0
1
0
1
0
1

11

Multiple processes share the physical memory

Physical
Memory

Page table
for process 1

Page table
for process n

Page table
for process i

CPU
Executing
Process 1

0
1
1
0
1
1
0

1
0
1
0
0
1
0

1
0
1
0
1
0
1

How can we solve the
problem of accessing the
memory twice for each
memory reference?

