CS/COE1541: Introduction to
Computer Architecture

Dept. of Computer Science
University of Pittsburgh

http://www.cs.pitt.edu/~melhem/courses/1541p/index.html

Chapter 5: Exploiting the Memory Hierarchy
Lecture 6: Virtual Memory

Lecturer: Rami Melhem

Virtual Memory (section 5.7)

Main memory can act as a cache for the secondary storage (ex. disk)

Virtual addresses

(generated by the CPU) physical addresses space

.\ . -
Size of the virtual space is - / dPhysu;aI mem otryl I(s(;ze
2%2 hytes (4GB) in 32-bit = €penas on g‘s ";‘1 € .
machines (ex. MIPS). — memor){) -~ aches par

N of the virtual space.

) —
In other architectures, the ~
virtual address space may ,77}<\
be 248 bytes. — Disk storage contains the
x virtual address space

Space not utilized
* Advantages:

1) illusion of having more memory than what can fit in the physical
memory

Virtual Memory

Physical memory

Virtual addresses
for process 1

Some pages belong to process 1

Some pages are shared

Virtual addresses
for process 2

» Advantages:

2) More than one process can share the same physical memory
3) Allows page sharing among processors

Physical memory as a cache for the virtual memory

» Block (page) size = 1KB ~ 64KB (large because of huge miss penalty)
- (as opposed to16B~64B in L1/L2)
* Miss penalty (cost of a page fault) = 1M~10M cycles (to access hard drive)
- (as opposed to 20~150 cycles (L2/memory)
» Hittime = 50 ~ 150 cycles
- (as opposed to1~3 in L1 and 6~12in L2)
* Miss rate = 0.00001~0.001% (called page fault rate)
- (as opposed to 0.1~10% in L1)
» Always write back (never write through)
- (always write back in L2, and commonly in L1)
» Fully associative (to maximize hit rate)
- (as opposed to 4-8 way set associative in L1/L2)
* Replacement implemented in OS
- (as opposed to hardware implementation for L1/L2)
* Locate pages using page tables
- (efficient way to implement full associativity)

Address translation through Page Tables

O 0 9N L AW NN R~ O

0
1
2 .
3 \/ahd V
4 \1 r— tOII:;]l;‘?I ge iS mapped
5 — sica] page 7
6 =_1
7 —]
8 7
i Page table Phveical
10 (12 entries) ysical memory
1 (10 pages)
Virtual memory
(12 pages)
» Table lookup replaces tag comparison in L1/L2. 5

Address translation through Page Tables

—
(e

11

N\
N
N
N

Virtual memory

Disk storage
(swap space)

» Table lookup replaces tag comparison in L1/L2.

]

0
1
2 -
: \/ilid —
0 LN —
&] —
1 —_
5 0 <
i ~—~\J
6 1 ——Y
0 N
7 —
8 0 [ZaN
1 AN
9 Page table

O 0 9 N L A WD~ O

Physical memory

Virtual to physical address translation

12
Assume 4KB pages (2! bytes) | Page table register |

Virtual address
31302928 27 crrrcrnecineeinee 1514 1312111098 +++++- 3210
| Virtual page number | page offset |
Virtual address >
3130292827 .ivriininns 15141312 111098 3210 :|~ 12
Valid Physical page number
| Virtual page number | page offset |
l —
Page table
202827 ..iieiiins 15141312 111098 3210 page table
| Physical page number page offset |
Physical address If 0 then page is not in 8
(# of bits depends on the size of the physical memory) memory (Page Fault)
1 GByte memory (2%) -> 30-bits address 20 2827 +errererereeearen ... a2z 0e8) 8210
| Physical page number | page offset |

Physical address

In this example, the physical memory is 1/4 the size of the virtual address space.

The page table is stored in memory starting at the address stored
in the “Page Table Register” 7

The Page Table is allocated in memory

Virtual page P
number_offsct Page address Memory
register
/;‘:,7 Page table

Physical address

» Each process has its own page table stored in memory starting at a specific
address indicated in a page address register.

* A memory reference (if hits in main memory) requires two memory operations

* A page fault (main memory miss) results in a disk operation.

» The page table and page address register are part of the process context (along
with the PC, stack pointer, registers ...)

Example of address translation

Virtual space = 128 pages

Virtual word address

XXXXXXXZZ72727

/’\Phyfical word address
\/

Virtual Page # Page offset
(7 bits) (4 bits)

Page table (1

28 entries)

Page = 16 words Physical
. alid
Examples: v Pased Physical memory = 8 pages
Page = 16 words
reference to Page 3 0000011 (3) [1]010(2)
0011000 0101 (page 24), 000(0y] _ Page 88
R 001 (1)
(% Page24 | 0011000 24) [1]110.(6) g:?g; Page 3
0011001 (25) [0 ==
") ¥ 100 (4)
reference to 101 (5) ——
ge
0011001 0011 (page 25) 110(6) Page 24
causes a page fault 11 (7)
7 Page 67 1000011 (67) [1]101 (5)
Page 88 1011000 (88) [1]000 (0

2777
Yyy

- Page offset
Physical Page # (4 bits)
(3 bits)

Multiple processes share the physical memory (

Page table
for process 1

CPU
Executing
Process i

Virtua

Page table
for process i

Page table

for process n

o|—[ele|—[e]—

Physical
Memory

10

Multiple processes share the physical memory {

Page table ?
for process 1 [7
0
1
5 1
o @6 0
\\\\6‘\\0 , .
o R
cru N\ N .
Executing 1
Process 1 o
0
1
0
1

How can we solve the Page table
problem of accessing the | forprocessi
memory twice for each

memory reference?

Page table
for process n

o|—[e]le|—[e]—

Physical

Memory 11

