
1

CS/COE1541: Introduction to
Computer Architecture

Dept. of Computer Science
University of Pittsburgh

http://www.cs.pitt.edu/~melhem/courses/1541p/index.html

Chapter 5: Exploiting the Memory Hierarchy
Lecture 5: cache coherence

Lecturer: Rami Melhem

2

Different caches may
contain different values for
the same memory location.

0 if write through

1 if write back
X = 1X = 0CPU 1 stores 0 into X3

X = 1 1X = 1CPU 2 reads X2

X = 1 1CPU 1 Reads X1

10

Memory Contents
for location X

Cache Contents
for CPU 2

Cache Contents
for CPU 1EventTime

Cache coherence in multiprocessors (sec. 5.10)

S ing le bus

X = 1 I/O

memory

Cache 8Cache 2Cache 1
X = 1 X = 1X = 0

CPU 8CPU 2CPU 1

3

Approaches to cache coherence

• Do not cache shared data

• Do not cache writeable shared data

• If connected by a bus, use snoopy caches (see following slides)

• If no shared bus, then

– Use broadcast to emulate shared bus

– Use directory-based protocols (to communicate only with
concerned parties, not with everybody – directory keeps track of
concerned parties)

P1

network/bus

$

Memory

P2

$

Pn

$

4

Snooping cache coherence

• Snooping each processor monitors the activity on the bus

• If a write is posted on the bus, each cache checks to see if it has a copy of
the block. If yes, it either

– update its copy with the new value (update protocol), or

– invalidate its copy (invalidation protocol).

Single bus

I/O

Snoop
tag

Snoop
tag

Cache 8Snoop
tag

Cache 2Cache 1

memory

X = 1

X = 1X = 1

EXAMPLE: A coherence protocol for write through caches

X = 0

X = 0

X = 0

CPU 8CPU 2CPU 1

5

A snooping protocol for write back caches

• If a processor writes to a block in its cache, its sends an “invalidate” message
on the bus indicating that it will EXCLUSIVELY own this block.

• If another cache has a copy of the block, it invalidates it.

• Subsequent accesses to an exclusive block does not need further invalidation.

Single bus

I/O

Snoop
tag

Snoop
tag

Cache 8Snoop
tag

Cache 2Cache 1

memory

X = 1

X = 1X = 1

A block is EXCLUSIVE in one cache means that it is dirty in this cache (its
value is different from memory) and no other cache has a copy of that the block.

X = 0X = 5

CPU 8CPU 2CPU 1

6

A snooping protocol for write back caches

• On a read miss, a block is brought into a cache and marked as SHARED.

• On a write miss, a block is brought into a cache and marked as EXCLUSIVE

– Other caches that have the block will notice the read request on the bus
and invalidate their copies.

Single bus

I/O

Snoop
tag

Snoop
tag

Cache 8Snoop
tag

Cache 2Cache 1

memory

X = 1

X = 1X = 1

A block that is cached in multiple caches is said to be in a SHARED state if its
value is consistent across the caches and the memory (clean blocks).

Hence:

X = 5

X = 1

CPU 8CPU 2CPU 1

7

X = 5X X = 5

A snooping protocol for write back caches

• If a block is Exclusive in one cache (ex. cache 8).

• And another cache (ex. cache 1) wants to read or write the block

– It puts a request on the bus

• The cache that has the block in the EXCLUSIVE state will

– Detect that it has an exclusive block requested by another cache

– Supply the block by putting it on the bus

– Set the block to SHARED if the request is to read, otherwise Invalidate it

• Both the memory and the requesting cache will get the correct block

Single bus

I/O

Snoop
tag

Snoop
tag

Cache 8Snoop
tag

Cache 2Cache 1

memory

X = 1X = 5

CPU 8CPU 2CPU 1

X = 5

X = 5X = 7

8

MSI: an invalidation protocol for write back caches

• In each cache, we record the sate of each block, B, as one of:

– Shared: block is clean (and may be also be in other caches)

– Exclusive (Modified): cache has only copy, it is writeable, and dirty

– Invalid: block not in cache (entry in cache is either invalid or contains another block)

• On a read hit, the state of B does not change

• On a read miss (block B is invalid in Ci) a “request to read B” is generated on the bus:
If another cache has B “exclusively”, it writes it back and B becomes “Shared” in both
caches. Otherwise the memory supplies B. In all cases, Ci sets the stateof B to “Shared”.

• On a write hit

– If B is Shared, an “invalidate” message is put on the bus -- all other caches that
have B should invalidate it – B becomes “Exclusive” in the requesting cache, Ci.

– If B is “Exclusive”, no invalidate message is issued – B stays “Exclusive” in Ci.

• On a write miss (block B is invalid in Ci) a “request to write B” is generated on the bus:

– If no other cache has B, the memory will supply B.

– If another cache has B as “Shared”, it invalidates it (the memory will supply B)

– If another cache has B in “exclusive”, it writes back B and “invalidates” it in its cache

– In all cases, B is set to “Exclusive” in Ci.

Protocol actions (when CPUi accesses a block, B, in its cache, Ci):

9

• Assumes that blocks A and B map to the same cache location L.
• Block size = one word
• Initially neither A nor B is cached processors P1 and P2 caches’

P1 writes 10 to A
(write miss)
P1 reads A
(read hit)
P2 reads A
(read miss)
P2 writes 20 to A
(write hit)
P2 writes 40 to A
(write hit)
P1 write 45 to A
(write miss)

L = invalid
P1 requests A(to write)
L A = 10 (exclusive)

L A = 10 (exclusive)
P1 writes A back
L A = 10 (shared)

L = invalid

L = invalid
P1 requests A(to write)
L A = 45 (exclusive)

L = invalid

L = invalid

L = invalid
P2 requests A(to read)
L A = 10 (shared)
Put invalidate A on bus
L A = 20 (exclusive)

L A = 40 (exclusive)
P2 writes A back
L = invalid

In P1’s cacheEvent

Example of MSI coherence

In P2’s cache

10

P1 writes 30 to B
(write miss)

P2 writes 50 to B
(write miss)
P1 reads B
(read miss)
P2 reads A
(read miss)
P1 writes 60 to A
(write miss)

L A = 45 (exclusive)
P1 writes A back
P1 requests B(to write)
L B = 30 (exclusive)
P1 writes B back
L invalid
P1 requests B(to read)
L B = 50 (shared)

L B = 50 (shared)
P1 requests A(to write)
L A = 60 (exclusive)

L =invalid

L =invalid
P2 requests B(to write)
L B = 50 (exclusive)
P2 writes B back
L B = 50 (shared)
P2 requests A(to read)
L A = 45 (shared)
A is invalidated
L = invalid

Event

Example (cont.)

In P1’s cache In P2’s cache

Note: False sharing can occur when block size > one word.
Example: - x and y are in the same cache block

- P1 repeatedly write x and not y, P2 repeatedly write y and not x

11

This 13.5 by 19.6 mm die has 731 million transistors. It contains four processors that each
have private 32-KB instruction and 32-KB data caches and a 512-KB L2 cache. The four
cores share an 8-MB L3 cache. The coherence is between the L2 caches and the L3.

Intel Nehalem

L1 L1 L1 L1

L3

Memory

L2 L2 L2 L2

