CS/COE1541: Introduction to Computer Architecture

Dept. of Computer Science University of Pittsburgh
http://www.cs.pitt.edu/~melhem/courses/1541p/index.html
Chapter 5: Exploiting the Memory Hierarchy Lecture 4

Lecturer: Rami Melhem

CPU-cache-memory Interface Signals

Cache Controller FSM (sec. 5.9)

Software optimization 1: loop interchange (sec. 5.4)

Software optimization 2: blocking (partitioning)

Matrix multiplication

> for $(\underline{i}=0 ; \mathrm{i}<\mathrm{n} ; \mathrm{i}++)$ \quad for $(\mathrm{j}=0 ; \mathrm{j}<\mathrm{n} ; \mathrm{j}++)$ $\quad \begin{aligned} & \mathrm{r}=0 ; \\ & \quad \text { for }(\mathrm{k}=0 ; \mathrm{k}<\mathrm{n} ; \mathrm{k}++) \\ & \quad \mathrm{r}=\mathrm{r}+\mathrm{A}[\mathrm{i}][\mathrm{k}]^{*} \mathrm{~B}[\mathrm{k}][\mathrm{j}] ; \\ & \mathrm{C}[\mathrm{i}][\mathrm{j}]=\mathrm{r} ;\} ;\end{aligned}$

A
*
B

Assume:
A fully associative cache Block size = 1 word
Cache size $<\mathrm{n}^{2}$

- One row of A will fit in the cache and be repeatedly used (perfect reuse)
- B will not fit in cache and hence a column of B will be evicted before reuse
- Every element of B will be used only once when brought to the cache

Software optimization through blocking (partitioning)

Partition the matrices into submatrices of size $p \times p$

$$
\begin{aligned}
& \text { for }(\mathrm{si}=0 ; \mathrm{si}<\mathrm{n} ; \mathrm{si}=+\mathrm{p}) \\
& \text { for (} \mathrm{sj}=0 ; \mathrm{sj}<\mathrm{n} ; \mathrm{sj}=+\mathrm{p} \text {) } \\
& \text { for }(\mathrm{sk}=0 ; \mathrm{sk}<\mathrm{n} ; \mathrm{sk}=+\mathrm{p}) \\
& \text { for (} \mathrm{i}=\mathrm{si} ; \mathrm{i}<\mathrm{si}+\mathrm{p} ; \mathrm{i}++ \text {) } \\
& \text { for }(j=s j ; j<s j+p ; j++) \\
& \{\mathrm{r}=0 \text {; } \\
& \text { for (} k=s k ; k<s k+p ; k++ \text {) } \\
& \mathrm{r}=\mathrm{r}+\mathrm{A}[\mathrm{i}][\mathrm{k}]^{*} \mathrm{~B}[\mathrm{k}][\mathrm{j}] ; \\
& C[i][j]=C[i][j]+r ; \\
& \text { \}; }
\end{aligned}
$$

If cache size $>p^{*} n+p^{2}$, then

- A will be perfectly reused
- Each element of B will be reused " p " times (reduce miss rate)

HW optimization: Interleaving for faster block access

- Accessing a block of K words should be faster than accessing K words at different times. Otherwise, fetching an entire block does not pay off - actually may hurt.
- EX: 1 cycle to send a word or an address and 15 cycles to fetch a word in memory (only 7 cycles if "open row" policy and the row is already open in the row buffer)

Interleaved memory

- $\mathrm{T}=1$ send request to bank 0
- $\mathrm{T}=2$ send request to bank 1
- $\mathrm{T}=3$ send request to bank 2
- $\mathrm{T}=4$ send request to bank 3
- $\mathrm{T}=16$ data ready at Bank 0 and received at $T=17$
- $\mathrm{T}=17$ data ready at Bank 0 and received at $\mathrm{T}=18$
- $\mathrm{T}=18$ data ready at Bank 0 and received at $\mathrm{T}=19$
- $\mathrm{T}=19$ data ready at Bank 0 and received at $\mathrm{T}=20$

Interleaved memory
Time to access memory $=$ $(1+15+1)+3=20$ cycles

HW optimization: using write buffers to reduce miss penalty

- Writing back an evicted block before reading a block increases the miss penalty
- Can read the requested block before writing back the old if a write buffer is used
- Priority is given to reading blocks in order to reduce miss penalty
- Blocks in the buffer are written back whenever there are no read requests
- Consecutive read requests will results in pending write backs in the write buffer
- For correctness, before sending any read request to memory, we have to check the write buffer
- If block is still in the write buffer, do not send the request to memory.

Dependable memory hierarchy (sec. 5.5)

- Fault: failure of a component
- Error: manifestation of a fault
- Faults may or may not lead to system failure

- Reliability measure: mean time to failure (MTTF)

- Repair efficiency: mean time to repair (MTTR)
- Mean time between failures
MTBF = MTTF + MTTR
- Availability = MTTF / MTBF
- Improving Availability
- Increase MTTF: fault avoidance, fault tolerance, fault forecasting
- Reduce MTTR: improved tools and processes for diagnosis and repair

Error detection Codes (even parity codes)

- Hamming distance: Number of bits that are different between two bit patterns

Example: distance between 1001 and 1010 is 2
$000 \rightarrow 000 \underline{0}$

- Codes with min. distance $=2$ provides single bit error detection.

Example: even parity code

- Eight of the sixteen 4-bit code words are invalid

- Any single bit flip in a valid code will produce an invalid code
- Hence, single error detection --- but cannot correct the error
- Note that two errors will go undetected

Error correcting Codes

Minimum distance $=3$ provides single error correction (SEC)

Error detection and correction

Minimum distance $=4$ provides single error correction (SEC)
and double error detection (DEC)

Single fault (can be corrected)

Double faults (will be detected)
Three faults (corrected to wrong code)

Hamming (Single error correcting) code

- To calculate code a 12-bits code word from an 8-bits data word:
- Number the bits of the code words from 1 to 12
- All bit positions that are a power of 2 are parity bits, the others are data bits
- Each parity bit is set so that a certain group of data bits have even parity.

Bit position:		1	2	3	4	5	6	7	8	9	10	11	12
Encoded data bits		p1	p2	d1	p4	d2	d3	d4	p8	d5	d6	d7	d8
Parity bit coverage	p1	x		x		x		x		x		x	
	p2		x	X			X	X			x	x	
	p4				x	X	X	X					X
	p8								x	X	x	x	x

Encoded data bits		p1	p2	1	p 4	0	1	0	p 8	0	0	1	1
Parity bit coverage	p 1	0		1		0		0		0		1	
	p 2		1	1			1	0			0	1	
	p 4				0	0	1	0					1
	p 8								0	0	0	1	1

Example: \qquad Data bits 10100011 are encoded as 011001000011

Hamming (Single error correcting) code

- If an error occurs in any of the 12 bits

EXAMPLE: 011001000011 becomes 011001000111

- Check the parity groups and compute the syndrome bits, $\mathrm{s}_{1}, \mathrm{~s}_{2}, \mathrm{~s}_{3}, \mathrm{~s}_{4}$

| | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| | 0 | 1 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 1 | 1 |
| $\mathrm{~s}_{1}$ | 0 | | 1 | | 0 | | 0 | | 0 | | 1 | |
| $\mathrm{~s}_{2}$ | | 1 | 1 | | | 1 | 0 | | | 1 | 1 | |
| $\mathrm{~s}_{3}$ | | | | 0 | 0 | 1 | 0 | | | | | 1 |
| $\mathrm{~s}_{4}$ | | | | | | | | 0 | 0 | 1 | 1 | 1 |

$\mathrm{s}_{1}=0$ (parity is correct)
$\mathrm{s}_{2}=1$ (parity is not correct)
$\mathrm{s}_{3}=0$ (parity is correct)
$\mathrm{s}_{4}=1$ (parity is not correct)

- If all syndrome bits are zeroes, then there is no error
- Otherwise, the syndrome bits indicate the position of the bit in error
- In our example $\mathrm{s}_{4}, \mathrm{~s}_{3}, \mathrm{~s}_{2}, \mathrm{~s}_{1}=1010=$ ten \rightarrow bit ten is the wrong bit

Hamming SEC/DED Code

- Hamming code cannot detect two errors (distance < 4)
- Add an additional parity bit for the whole word $\left(p_{n}\right)$
- Make Hamming distance $=4$
- Decoding:
- No error in p_{n} and syndrome $=0 \rightarrow$ no error
- Error in p_{n} and syndrome $>0 \rightarrow$ single correctable error
- No error in p_{n} and syndrome $>0 \rightarrow$ double errors (uncorrectable)
- Error in p_{n} and syndrome $=0 \quad \rightarrow$ error in the SEC parity bit
- Note: ECC DRAM uses SEC/DED with 8 bits (7 for syndrome and 1 for p_{n}) protecting each 64 bits

