
1

CS/COE1541: Introduction to
Computer Architecture

Dept. of Computer Science
University of Pittsburgh

http://www.cs.pitt.edu/~melhem/courses/1541p/index.html

Chapter 5: Exploiting the Memory Hierarchy
Lecture 4

Lecturer: Rami Melhem

2

CPU-cache-memory Interface Signals

Cache
controllerCPU Memory

Read/Write

Valid

Address

Write Data

32

32

Read Data

Ready

32

Read/Write

Valid

Address

Write Data

Read Data

Ready

32

128

128

Multiple cycles
per access

3

Cache Controller FSM (sec. 5.9)

Idle
(cache ready)

Compare
Tags &

Valid bit

Write
back old

block

Request
block
from

memory

Memory busy Memory busy

Request from CPU

Cache hit / return data to CPU

C
ache m

iss and
old block dirty

Memory ready

4

Software optimization 1: loop interchange (sec. 5.4)

Matrix A is stored Row-wise (row major)

Fully associative cache, block size = 4 words

Cache size < 4n words

100% Miss rate

n

i

j

In memoryCache

for (i = 0; i < n; i = i+1)

for (j = 0; j < n; j = j+1)

C = + A[i][j]; 25% Miss rate

Take advantage of spatial locality

Row-wise memory access

for (j = 0; j< n; j = j+1)

for (i = 0; i < n; i = i+1)

C =+ A[i][j];

Column-wise memory access

5

Software optimization 2: blocking (partitioning)

Data used when i = 0, j = 0, … , n-1

C = A * B

for (i = 0 ; i < n ; i++)

for (j = 0 ; j < n ; j ++)

{r = 0;

for (k = 0; k < n; k++)

r = r + A[i][k]*B[k][j];

C[i][j] = r; };

Data used when i = 1, j = 0, … , n-1

• One row of A will fit in the cache and be repeatedly used (perfect reuse)
• B will not fit in cache and hence a column of B will be evicted before reuse
• Every element of B will be used only once when brought to the cache

n

Assume:
A fully associative cache
Block size = 1 word
Cache size < n2

Matrix multiplication

6

for (si = 0; si < n; si =+ p)

for (sj = 0; sj < n; sj =+ p)

for (sk = 0; sk < n; sk =+ p)

for (i=si ; i < si+p ; i++)

for (j=sj ; j < sj+p ; j++)

{r = 0;

for (k=sk; k < sk+p; k++)

r = r + A[i][k]*B[k][j];

C[i][j] = C[i][j] + r;

};

Software optimization through blocking (partitioning)

C =+ A * B

If cache size > p * n + p2, then

• A will be perfectly reused
• Each element of B will be reused

“p” times (reduce miss rate)

p
Partition the matrices into
submatrices of size p x p

p

n

p

p

7

• Accessing a block of K words should be faster than accessing K words at different times.
Otherwise, fetching an entire block does not pay off – actually may hurt.

HW optimization: Interleaving for faster block access

• EX: 1 cycle to send a word or an address and 15 cycles to fetch a word in memory
(only 7 cycles if “open row” policy and the row is already open in the row buffer)

Memory

one-word wide memory

CPU

cache

Bus

4-word wide organization
(wide bus and memory ports)

Memory

CPU

cache

Bus

Memory
Bank 0

Memory
Bank 1

Memory
Bank 2

Memory
Bank 3

Interleaved memory

CPU

cache

Bus

Time to access a block (4 words)
= 1 + 15 + 1 = 17 cycles

Time to access a block (4 words)
= (1 + 15 + 1) + 3 = 20 cycles

Time to access 4 words

4*(1+15+1)=68 cycles

Rows will not be open if
accesses are not strictly
consecutive

Time to access a block (4 words)

4*(1+15+1)=68 cycles

The row will be open when
accessing the last three words

(1+15+1)+3(1+7+1)=44 cycles

8

Interleaved memory

Memory
Bank 0

Memory
Bank 1

Memory
Bank 2

Memory
Bank 3

Interleaved memory

CPU

cache

Bus

Time to access memory =
(1 + 15 + 1) + 3 = 20 cycles

• T = 1 send request to bank 0

• T = 2 send request to bank 1

• T = 3 send request to bank 2

• T = 4 send request to bank 3

• T = 16 data ready at Bank 0 and received at T = 17

• T = 17 data ready at Bank 0 and received at T = 18

• T = 18 data ready at Bank 0 and received at T = 19

• T = 19 data ready at Bank 0 and received at T = 20

9

• Writing back an evicted block before reading a block increases the miss penalty

• Can read the requested block before writing back the old if a write buffer is used

• Priority is given to reading blocks in order to reduce miss penalty

• Blocks in the buffer are written back whenever there are no read requests

• Consecutive read requests will results in pending write backs in the write buffer

HW optimization: using write buffers to reduce
miss penalty

Memory
cache

Write buffer

Block read requests

Block to
be written
back

• For correctness, before sending any read request to memory, we have to check
the write buffer

• If block is still in the write buffer, do not send the request to memory.

10

Dependable memory hierarchy (sec. 5.5)

• Fault: failure of a component

• Error: manifestation of a fault

• Faults may or may not lead to system failure

Normal operation

Service interruption

FailureRestoration
(repair)

• Reliability measure: mean time to failure (MTTF)

• Repair efficiency: mean time to repair (MTTR)

• Mean time between failures

MTBF = MTTF + MTTR

• Availability = MTTF / MTBF

• Improving Availability

– Increase MTTF: fault avoidance, fault tolerance, fault forecasting

– Reduce MTTR: improved tools and processes for diagnosis and repair

time
MTTFMTTR

MTBF

MTTF

11

0001
0010

0100

0111
1000

1011

1101
1110

0000

0011

0101
0110

1001
1010

1100

1111

Error detection Codes (even parity codes)

• Hamming distance: Number of bits that are different between two bit patterns

Example: distance between 1001 and 1010 is 2

• Codes with min. distance = 2 provides single bit error detection.

Example: even parity code

0100 0101

0110 0111

0000 0001

0010 0011

1100 1101

1110 1111

1000 1001

1010 1011

0100

0001

0010

1000

1101

1011

0001 1110

• Eight of the sixteen 4-bit code words are invalid

• Any single bit flip in a valid code will produce an invalid code

– Hence, single error detection --- but cannot correct the error

– Note that two errors will go undetected

Invalid
Code
words

Data
words

Code
words

000

001

010
011

100
101

110

111

12

Error correcting Codes

Minimum distance = 3 provides single error correction (SEC)

00100 00110

00101 00111

00000 00010

00001 00011

01100 01110

01101 01111

01000 01010

01001 01011

10100 10110

10101 10111

10000 10010

10001 10011

11100 11110

11101 11111

11000 11010

11001 11011

00100 00110

00101 00111

00000 00010

00001 00011

00111 00011 11011

Single fault (can be corrected)

00111 10011 11011

Double faults (corrected to wrong code)

00 00000
01 00111
10 11100
11 11011

2-bit 5-bit
encoding

Data
words

Code
words

13

Error detection and correction

100000 110000 110100 110110000000

Minimum distance = 4 provides single error correction (SEC)
and double error detection (DEC) Single fault (can be corrected)

Double faults (will be detected)

Three faults (corrected to wrong code)

00 000000
01 001111
10 111001
11 110110

2-bit 6-bit
encoding

14

Hamming (Single error correcting) code

• To calculate code a 12-bits code word from an 8-bits data word:

– Number the bits of the code words from 1 to 12

– All bit positions that are a power of 2 are parity bits, the others are data bits

– Each parity bit is set so that a certain group of data bits have even parity.

Example:
Data bits 10100011
are encoded as

p1

p2

p4

p8

p1 p2 p4 p8Encoded data bits

Parity bit
coverage

Bit position: 1 2 3 4 5 6 7 8 9 10 11 12

d1 d2 d3 d4 d5 d6 d7 d8

x x x x x x

x x x x x x

x x x x x
x x x x x

Note: the minimum distance of the Hamming code = 3

p1

p2

p4

p8

p1 p2 p4 p8Encoded data bits

Parity bit
coverage

1 0 1 0 0 0 1 1

1 0 0 0 1

1 1 0 0 1

0 1 0 1

0 0 1 1

0

1

0

0

011001000011

15

Hamming (Single error correcting) code

• If an error occurs in any of the 12 bits

EXAMPLE: 011001000011 becomes 011001000111

• Check the parity groups and compute the syndrome bits, s1, s2, s3, s4

0 1 1 0 0 1 0 0 0 1 1 1

s1 0 1 0 0 0 1

s2 1 1 1 0 1 1

s3 0 0 1 0 1

s4 0 0 1 1 1

s1 = 0 (parity is correct)

s2 = 1 (parity is not correct)
s3 = 0 (parity is correct)
s4 = 1 (parity is not correct)

• If all syndrome bits are zeroes, then there is no error

• Otherwise, the syndrome bits indicate the position of the bit in error

• In our example s4, s3, s2, s1 = 1010 = ten bit ten is the wrong bit

Not magic!!
There is a theory behind that

1 2 3 4 5 6 7 8 9 10 11 12

16

Hamming SEC/DED Code

• Hamming code cannot detect two errors (distance < 4)

• Add an additional parity bit for the whole word (pn)

• Make Hamming distance = 4

• Decoding:
• No error in pn and syndrome = 0 no error

• Error in pn and syndrome > 0 single correctable error

• No error in pn and syndrome > 0 double errors (uncorrectable)

• Error in pn and syndrome = 0 error in the SEC parity bit

• Note: ECC DRAM uses SEC/DED with 8 bits (7 for
syndrome and 1 for pn) protecting each 64 bits

