
1

CS/COE1541: Introduction to
Computer Architecture

Dept. of Computer Science
University of Pittsburgh

http://www.cs.pitt.edu/~melhem/courses/1541p/index.html

Chapter 5: Exploiting the Memory Hierarchy
Lecture 2

Lecturer: Rami Melhem

2

• Until specified otherwise, it will be assumed that a block is one word of data

• Three issues:
– How do we know if a data item is in the cache?
– If it is, how do we find it?
– If it is not, what do we do?

• It boils down to
– where do we put an item in the cache?
– how do we identify the items in the cache?

• Two solutions
– put item anywhere in cache (associative cache)
– associate specific locations to specific items (direct mapped cache)

The Basics of Caches

address

data

Main
memory
Main

memory
CacheCacheCPUCPU

Note: we will assume that memory requests are for words
(4 Bytes) although an instruction can address a byte

3

Fully associative cache

Example:
• An 8-word cache

(indexed by 000, … , 111)
• A 32-words memory

(addresses 00000, … , 11111)

Cache

Memory

000
001
010
011
100
101
110
111

To cache a data word, d, whose memory address is L:

• Put d in any location in the cache

• Tag the data with the memory address L.

Cache index

00000
00001
00010
00011
00100
00101
00110
00111
01000
01001
01010
01011
01100
01101
01110
01111
10000
10001
10010
10011
10100
10101
10110
10111
11000
11001
11010
11011
11100
11101
11110
11111

Memory word addresses
(without the 2-bits byte offset)

01001

11000

01110

000
001
010
011
100
101
110
111

Advantage: can fully utilize the cache capacity

Disadvantage: need to search all tags to find data

DataTags

4

Direct Mapped Cache (direct hashing)

Assume that the size of the cache is N words.

To cache a data word, d, whose memory address is L:

• Put d in cache at index = L mod N

• Tag the data with L / N

Drawback: collision
• memory address L = 25 (11001)
• cached in index 25 mod 8 = 1 (001)
• Tagged with 25 / 8 = 3 (11)

Example:
• memory address L = 6 (00110)
• cached in index 6 mod 8 = 6 (110)
• Tagged with 6 / 8 = 0 (00)

• memory address L = 9 (01001)
• cached in index 9 mod 8 = 1 (001)
• Tagged with 9 / 8 = 1 (01)

Tags Data

Cache

000
001
010
011
100
101
110
111

00000
00001
00010
00011
00100
00101
00110
00111
01000
01001
01010
01011
01100
01101
01110
01111
10000
10001
10010
10011
10100
10101
10110
10111
11000
11001
11010
11011
11100
11101
11110
11111

01

00

least significant log N bits of L

most significant N-log N bits of L

Should “evict” Location 9
before caching Location 25.

5

• Use the 10-bit index to access the cache
• Compare the stored tag with the 20 bit tag from the address
• if tag match and valid bit = 1, then cache hit (Hit = 1)
• Else cache miss (Hit = 0)

Direct Mapped Cache (example of a 4KB cache)

0

1

2

1021

1022

1023

Hit data

3220

dataTagIndex valid

Byte offset

Requested memory address (showing bit positions)
31 30 . . . 13 12 11 . . . 2 1 0

A valid bit is used to
indicate that a location
contains valid data

Index
10Tag 20

4KB cache, 4Bytes/word

Cache size =210 words

Assume that a memory
address is 32 bit long
(byte address, as in MIPS)

• 2 bits for byte offset
• 10 bits for index
• 20 bits for tag

 return data

6

read L

Reason: if data was changed
(due to write operations) after
it was brought to cache, then
the change has to be reflected
in memory

• In case of a cache hit (tag match and valid bit = 1)
– read from or write the new data into the cache at index L mod N

• In case of a miss: (tag mismatch or valid bit = 0)
– Stall the CPU
– If cache index “L mod N” contains valid data (valid bit =1), evict the current data
 write the current data back to memory

– Fetch the data from memory and deliver to cache
– Read from or write the new data into the cache
– Resume the execution of the CPU

Hits vs. Misses in direct mapped cache

One of the following scenarios occur in the cache when the CPU
requests a memory address to read or write memory location L:

L: 100

Cache of size N Memory

L mod N: 100L mod N: 200L mod N: 300
L+N: xxx

L: 300

L mod N: xxx
write L=200write L=300read L+N

Write back

7

• Write back policy – uses a “dirty bit”

– When you bring data into the cache, set its dirty bit to 0

– On a write operation, write only into the cache and set the dirty bit to 1

– When the data is evicted from the cache, write the data back to memory
only if the dirty bit = 1.

• Write through policy – does not use a “dirty bit”

– Every time you write into the cache, write also into memory

– Hence, do not need to “write back” when you evict data from the cache

– On a write miss, may even write only to memory and not bring data to the
cache (called a “no write allocate policy”, as opposed to “write allocate”)

Two policies when writing data into the cache

L: 100

L mod N: 1000

dirty bit

L mod N: 2001

L: 100

L mod N: 100L mod N: 200

L: 200

write L=200
Write back

8

The total number of bits needed for a 4KB cache assuming 32-bit address:
• 1024 * 32 bits for data
• 1024 * 20 bits for tags
• 1024 * 1 valid bits

Storage overhead (example of a 4KB cache)

0

1

2

1021

1022

1023

Memory address (showing bit positions)

dataHit Tag

Index

Byte offset

3220

dataTagIndex valid

1020

31 30 . . . 13 12 11 . . . 2 1 0

210 * 53 = 53 Kbits In addition, there is usually
a “dirty bit” per cache entry.

9

Exploiting spatial locality by using “multiple word” blocks

memory

0000 0
0000 1
0001 0
0001 1
0010 0
0010 1
0011 0
0011 1
0100 0
0100 1
0101 0
0101 1
0110 0
0110 1
0111 0
0111 1
1000 0
1000 1
1001 0
1001 1
1010 0
1010 1
1011 0
1011 1
1100 0
1100 1
1101 0
1101 1
1110 0
1110 1
1111 0
1111 1

00
01
10
11

cache

Alternate representations

tag offset(1)offset(0)

Block
index

Example: two words per block

• One tag per block ==> improves efficiency
• Write misses have to preserve block integrity

- Copy block from memory to cache
- Write the word into the block in the cache.

Tag = (memory word address) / (cache size in words)
Word Index = (memory word address) mod (cache size in words)

Block Index = Word Index / block size in words
Block offset = Word Index mod block size in words

Word
address

block 0, word 0
block 0, word 1
block 1, word 0
block 1, word 1
block 2, word 0
block 2, word 1
block 3, word 0
block 3, word 1

datatag
00 0
00 1
01 0
01 1
10 0
10 1
11 0
11 1

Word
index cache

Block index

Block offset (offset of the
word within the block)

Block
offset

Block
address

10

Example: block size = 2 words

memory

Memory word address

tag data

Word
index

block

tag data data

Block index

Word index

• When a CPU issues a memory address, it is decomposed into a tag and a word index
• The word index is decomposed into block index and a block offset

tag 00

Word address
Byte
offset

Word index

block index block offset

Block address = memory word address / block size in words
Tag = block address / cache size in blocks
Block index = block address mod cache size in blocks

Equivalent formulas:

Block address

11

??

Example: 64KB cache with blocks of 4 words (16 bytes)

32

Mux

32 32 32

Data block (4 words)

128 bits

V Tag

4K
entries

32

data2

Block offset

12

Index

31 … 16 15 … 4 3 21 0

32-bits address (showing bit positions)

The total number of bits needed for a 64KB cache assuming 32-bit address is:
• 212 * 128 bits for data
• 212 * 16 bits for tags
• 212 * 1 valid bits

16

Hit 16
Tag

212 * 145 = 580 Kbits

16 bits

Word = 22 bytes
Block = 22 words
Cache = 212 blocks Byte offset (2 bits)

Block offset (2 bits)Block index (12 bits)
Tag

