
1

CS/COE1541: Introduction to
Computer Architecture

Dept. of Computer Science
University of Pittsburgh

http://www.cs.pitt.edu/~melhem/courses/1541p/index.html

Chapter 5: Exploiting the Memory Hierarchy
Lecture 1

Lecturer: Rami Melhem

2

– What is caching?

– Why have a memory hierarchy

– DRAM Vs SRAM

– Disk and Flash storage

– Using SRAM to cache DRAM data

Memory technology and Hierarchy

Outline:

3

Using a cache to speed up memory operations

data

address

Cache hit

CPUCPU
Main

Memory
(large & slow)

Main
Memory

(large & slow)

address

data

Main
memory
Main

memory

Cache
(small
& fast)

Cache
(small
& fast)

CPUCPU

address

data

Cache miss

Main
memory
Main

memory

Cache
(small
& fast)

Cache
(small
& fast)

CPUCPU

CPUCPU

Main memoryMain memory DRAMDRAM

SRAMSRAM

RegsRegs

4

• Because users want fast access to large amount of data (not possible)
• SRAM access times are 0.5 – 2.5 ns at cost of $500 to $1000 per Gbyte (in 2012)
• DRAM access times are 50-70 ns at cost of $10 to $20 per Gbyte.
• Flash access times are 5-50 us at cost of $0.75 to $1 per Gbyte
• Disk access times are 5-20 ms at cost of $0.05 to $0.1 per Gbyte.

• The hierarchy gives the illusion of one large and fast memory

Why have a Memory Hierarchy

CPUCPU

Hard disk / FlashHard disk / Flash

RegsRegs
Smaller
Faster
More expensive per byte

Larger
Slower
Cheaper per byte

Main memoryMain memory

DRAMDRAM

L1 cacheL1 cache

L2 cacheL2 cache
SRAMSRAM

SRAMSRAM

5

DRAM Vs SRAM

• DRAM cell relies on a capacitor
- Charged 1 , otherwise 0

• Slower but smaller
• Volatile (may loose charge over time)
• Need to be refreshed periodically

• SRAM cell is built from 6 transistors

• Faster but larger
• Non-volatile – keeps its value
• Does not need to be refreshed

(word line)

(bit line)

6

Arranging cells in a 2-D structure

Example:

• Assume a byte-addressable memory that contains 512Bytes (a byte = 8 bits)

• Bytes are arranged into an array of 64x8 bytes (to keep an aspect ratio of 1)

• Assume row major ordering

• Need 9 bits to address one of the 512 bytes

• A 9-bit address is translated into a row address (6 bits) and a column address (3 bits)

xxxxxxxx xxxxxxxx xxxxxxxx xxxxxxxx xxxxxxxx xxxxxxxx xxxxxxxx xxxxxxxx

xxxxxxxx xxxxxxxx xxxxxxxx xxxxxxxx xxxxxxxx xxxxxxxx xxxxxxxx xxxxxxxx

xxxxxxxx xxxxxxxx xxxxxxxx xxxxxxxx xxxxxxxx xxxxxxxx xxxxxxxx xxxxxxxx

xxxxxxxx xxxxxxxx xxxxxxxx xxxxxxxx xxxxxxxx xxxxxxxx xxxxxxxx xxxxxxxx

xxxxxxxx xxxxxxxx xxxxxxxx xxxxxxxx xxxxxxxx xxxxxxxx xxxxxxxx xxxxxxxx

xxxxxxxx xxxxxxxx xxxxxxxx xxxxxxxx xxxxxxxx xxxxxxxx xxxxxxxx xxxxxxxx

xxxxxxxx xxxxxxxx xxxxxxxx xxxxxxxx xxxxxxxx xxxxxxxx xxxxxxxx xxxxxxxx

. . .

. . .
. . .
. . .
. . .
. . .
. . .
. . .

. . .

. . .
. . .
. . .
. . .
. . .
. . .
. . .

Col 0
(000)

Col 1
(001)

Col 2
(010)

Col 3
(011)

Col 4
(100)

Col 5
(101)

Col 6
(110)

Col 7
(111)

Row 0 (000000)

Row 1 (000001)

Row 2 (000010)

Row 62 (111110)

Row 63 (111111)

Row 20 (010100)
Row 21 (010101)

Byte address 164
 Row address 20

+ col address 4

Byte address 010100100
 Row address 010100

+ col address 100

Note:
20 = 164 / 8
4 = 164 mod 8 xxxxxxxx

 byte x is in row x/8 and column (x mod 8)

7

DRAM operation

• Closed row/page policy: close the row
after you read the data

• Open row/page policy: close the row
only when you want to open a new row
– useful if you will read again from the
same row.

DRAM
Memory bank

Row buffer
(page buffer)

• Each memory bank has a “row buffer”, which is non-volatile (SRAM registers)

• To read a byte (a similar process applies for writing):

• The memory controller sends the row address of the byte

• The entire row is read into the row buffer (the row is opened)

• The memory controller sends the column address of the byte

• The memory returns the byte to the controller (from the row buffer)

• The memory controller sends a Pre-charge signal (close the open row)

8

Multiple banks per memory chip

• Assume 4 banks per chip, 512 bytes per bank total 2048 bytes

• 2048 bytes the address of each byte is 11 bits

• 2 bits to select a bank

• 6 bits to select a row

• 3 bits to select a column

xx xxxxxx xxx

• Example of a possible ordering

(bank, then row major ordering)

Column number

Bank number

Row number

• Other ways of ordering

xx xxx xxxxxx

xxxxxx xx xxx

Bank then column
major

Row then bank
major

9

DRAM internals (not in textbook)

Command interface

Row address path

Column address path

Data I/O interface

Memory banks

Refresh circuitry

Row buffers

EX: a 128 Mbytes chip (227) 4 banks, each having 32 Mbytes organized
as 214 =16K rows and 211 =2K columns

M
em

ory controller

14 row address bits 11 column address bits2 bits

Bank
address

Memory Chip

10

DRAM internal

Row address

Column address

1. A Row in a bank is selected and read using
{BA1,BA0,A13~A0}

2. Data is moved to I/O latch (row buffer)

3. Part of data is selected using column address

4. Selected data is moved to chip I/O

11

DIMM 1
DIMM 2

DIMM 3

Channel 0

DRAM Organization

• A memory chip is organized internally as a number of banks (1-8 usually).

• Multiple banks can execute different commands at the same time

• A Rank consists of multiple (parallel) chips contributing to the same transaction. For

example, each of 4 chips can provide a byte for a total of 32 data bits (read or written).

• A DIMM (Dual Inline Memory Module) consists of 1 – 4 ranks (2 in the figure) mounted

on a single printed-circuit board.

• A Channel supports multiple DIMMS (4 in the above figure)

DIMM 0

Rank

Chip

Bank

Memory
controller

DIMM 0
DIMM 1

DIMM 2
DIMM 3

Channel 1

12

Hard disk storage

To access data:

– seek: position head over the proper track (each surface has a head)

– rotational latency: wait for desired sector (on average half a rotation)

– transfer: read or write the data from a sector

Example:
• One or more magnetic surfaces
• 10,000 – 50,000 track per surface
• 100 - 500 sectors per track,
• 512 Bytes (4Kbits) per sector,
• A bit is stored in a small area of the

magnetic surface
• One magnetization direction 1
• The opposite direction 0
• One read/write head per surface

- Can be positioned over any track
• Disks are continuously rotating

Read/write
heads

13

Flash Storage

• Non-volatile semiconductor storage
– 100X – 1000X faster than disk

– Smaller, lower power, more robust

– But more $/GB (between disk and DRAM)

• Flash bits wears out after 1000’s of accesses
– Not suitable for main memory (too many write operations)

– Wear levelling: remap data to less used blocks

NOR flash:
Lower density
Random access
More reliable
Slower erase
Faster random read
Used for instruction memory

NAND flash:
Higher density
Page access
Less reliable (needs ECC)
Faster erase
Faster streaming read
Used for streamed data

Word line

Bit line

Control gate

Floating gate
(-) (-) (-) (-)

Oxide
layer

Drain Source

14

Locality

• Having a memory hierarchy makes sense because of “locality
of reference”.

• If an item is referenced,

– it will tend to be referenced again soon (temporal locality)

– nearby items will tend to be referenced soon (spatial locality)

Can you think of examples of locality in code and data?

• Consider any two consecutive levels (upper, lower)

– block: minimum unit of data transferred between levels

– hit: data requested is in the upper level

– miss: data requested is not in the upper level

– hit rate: percentage of hits (sometimes called hit ratio)

– miss rate: percentage of miss (sometimes called miss ratio)

– hit time: the time to satisfy request in case of a hit

– miss penalty: the time to satisfy a request in case of a miss

CPUCPU

Hard disk / FlashHard disk / Flash

Main memoryMain memory

L1 cacheL1 cache

L2 cacheL2 cache

Hard disk / FlashHard disk / Flash

Main memoryMain memory

15

• We will consider the caching of data from main memory into an SRAM cache
• Until specified otherwise, we will assume that the block size is one word

• Will discuss
– where do we put an item in the cache?
– how do we identify the items in the cache?

• Two solutions
– put item anywhere in cache (associative cache)
– associate specific locations to specific items (direct mapped cache)

The Basics of Caches

address

data

Main
memory
Main

memory
CacheCacheCPUCPU

