
Rejuvenating Shadows: Fault Tolerance with Forward Recovery

Xiaolong Cui, Taieb Znati, Rami Melhem
Computer Science Department

University of Pittsburgh
Pittsburgh, USA

Email: {mclarencui, znati, melhem}@cs.pitt.edu

Abstract—In today’s large-scale High Performance Comput-
ing (HPC) systems, an increasing portion of the computing
capacity is wasted due to failures and recoveries. It is expected
that exascale machines will decrease the mean time between
failures to a few hours, making fault tolerance a major
challenge. This work explores novel methodologies to fault
tolerance that achieve forward recovery, power-awareness, and
scalability. The proposed model, referred to as Rejuvenating
Shadows, is able to deal with multiple types of failure and
maintain consistent level of resilience. An implementation is
provided for MPI, and empirically evaluated with various
benchmark applications that represent a wide range of HPC
workloads. The results demonstrate Rejuvenating Shadows’
ability to tolerate high failure rates, and to outperform in-
memory checkpointing/restart in both execution time and
resource utilization.

Keywords-Rejuvenation; Leaping; Extreme-scale computing;
Forward recovery; Reliability;

I. INTRODUCTION

The path to extreme scale computing involves several
major road blocks and numerous challenges inherent to the
complexity and scale of these systems. A key challenge
stems from the enormous number of components, order of
magnitudes higher than in existing HPC systems, which
will lead to frequent system failures, significantly limiting
computational progress. Another challenge stems from the
stringent requirement, set by the US Department of Energy,
to operate in a power envelope of 20 Megawatts [1]. This
puts into question the viability of traditional fault-tolerance
methods and calls for a reconsideration of the resilience and
power-awareness problems, at scale.

A common approach to resilience relies on time redun-
dancy through checkpointing and rollback recovery. Dur-
ing normal execution, the computation state is periodically
saved to a stable storage to allow recovery from a failure
by restarting from a checkpoint. As the rate of failure
increases, however, the time to periodically checkpoint and
restart approaches the system’s Mean Time Between Failures
(MTBF), leading to a significant drop in efficiency as well
as increase in power [2].

A second approach to resilience is replication, which
exploits hardware redundancy by executing simultaneously
multiple instances of the same task on separate proces-
sors [3]. The physical isolation of processors ensures that

faults occur independently, thereby enhancing tolerance to
failure. This approach, however, suffers from low efficiency,
as it dedicates 50% of the computing infrastructure to
the execution of replicas. Furthermore, achieving exascale
performance, while operating within the 20 MW power cap,
becomes challenging and may lead to high energy costs.

To address these shortcomings, the Shadow Replication
computational model has been proposed to achieve resilience
in extreme-scale, failure-prone computing environments [4],
[5], [6]. Its basic tenet is to associate with each main process
a suite of coordinated shadow processes, to deal with failures
and meet the performance requirements of the underlying
application. For most applications, a single shadow that
runs as a replica of its associated main, but at a lower
execution rate, would be sufficient to achieve fault tolerance
while maintaining acceptable response time. The viability of
this Lazy Shadowing scheme to achieve higher performance
and significant energy savings, in comparison to existing
approaches, has been experimentally demonstrated [7].

To achieve high resilience to failure in a wide range of
exascale computing environments, Lazy Shadowing assumes
that, during the lifetime of the application, either the main or
the shadow fails, but not both. Consequently, the resilience
of the system decreases as the number of failure increases.
Furthermore, when failure occurs, shadows are designed to
substitute for their associated mains. The tight coupling and
ensuing fate sharing between a main and its shadow increase
the implementation complexity and reduce the efficiency of
the system to deal with failures.

In this paper, we introduce the new concept of Rejuvenat-
ing Shadows to reduce the system’s vulnerability to multiple
failures and maintain consistent level of resilience. In this
new model, shadow is no longer promoted to a substitute
for its associated main upon a failure. Instead, each shadow
is a “rescuer” whose role is to restore the associated main
to its exact state before failure.

The main contributions of this paper are as follows:
• A new power-aware fault tolerance model, Rejuvenat-

ing Shadows, to deal with both transient and crash
failures and preserve resilience across failures.

• A full-feature implementation of Rejuvenating Shadows
into Message Passing Interface (MPI) to enhance its
tolerance to failure at scale.



• A comparative analysis and performance evaluation of
the implementation, using multiple benchmark applica-
tions, under various failures.

The rest of the paper is organized as follows. A review
of the related work is provided in Section II. Section III
introduces fault model and system design, followed by dis-
cussion on implementation details in Section IV. Section V
presents empirical evaluation results. Section VI concludes
this work and points out future directions.

II. RELATED WORK

The exascale initiative has re-ignited the study of fault
tolerance, with significant progress on how we mitigate the
impact of failures. Checkpointing/restart periodically saves
the execution state to a stable storage, with the anticipation
that, in case of failure, computation can be restarted from
a saved checkpoint [8]. Message logging protocols, which
combines checkpointing with logging of non-deterministic
events, allow the system to recover beyond the most recent
consistent checkpoint [9]. Proactive fault tolerance relies
on a prediction model to forecast faults, so that preventive
measures, such as task migration or checkpointing, can be
undertaken [10]. Algorithm-based fault tolerance (ABFT)
uses redundant information inherent to its algorithmic struc-
ture of the problem to achieve resilience. For the past 30
years, however, checkpointing has been the primary fault
tolerance mechanism in production HPC systems [11].

Coordinated Checkpointing gains its popularity from its
simplicity and ease of implementation. Its major draw-
back, however, is lack of scalability [12]. Uncoordinated
checkpointing allows processes to record their states inde-
pendently, thereby reducing the overhead during fault free
operation [13]. However, the scheme requires that each pro-
cess maintain multiple checkpoints, necessary to construct a
consistent state during recovery. This, in turn, complicates
the garbage collection scheme [14].

One of the largest overheads in disk-based checkpoint-
ing techniques is the time to save a checkpoint. Multiple
optimization techniques have been proposed to reduce this
overhead, including incremental checkpointing, in-memory
checkpointing, and multi-level checkpointing [15], [16],
[17], [18]. Although well-explored, these techniques have
not been widely adopted in HPC environments.

Recently, process replication has been proposed as a
viable alternative to checkpointing in HPC, as replication
can significantly increase system availability and potentially
achieve higher efficiency in failure prone systems [19],
[20]. Several replication schemes are implemented in MPI,
with a runtime overhead ranging from negligible to 70%,
depending on the application communication patterns [21],
[11]. In addition, full and partial replication are used to
augment existing checkpointing techniques, and to guard
against silent data corruption [22], [23], [24].

Figure 1. Logical organization of 12 mains and their shadows with every
4 shadows collocated on one processor, resulting in 3 shadowed sets.

Rejuvenating Shadows takes a different approach from
these protocols and explores the trade-offs between time
and hardware redundancy to achieve fault tolerance with
power awareness. The flexibility in balancing these trade-
offs, together with the ability to rejuvenate after failures,
allows Rejuvenating Shadows to maximize system efficiency
and maintain a consistent level of resilience to failure.

III. REJUVENATING SHADOWS MODEL

Rejuvenating Shadows assumes a fail-stop fault model,
whereby a failed process halts and its internal state and
memory content are irretrievably lost [25]. Furthermore, it
is assumed that the processor on which the failure occurred
can be rebooted, and used to start a new process1. This
assumption also holds for checkpointing/restart to ensure fair
comparative analysis.

Similar to Lazy Shadowing, Rejuvenating Shadows is a
Shadow Replication based model that associates a shadow
to each main process. To achieve fault tolerance, shadows
execute simultaneously with the mains, but on different
nodes. Furthermore, to save power, shadows execute at a
lower rate than their associated mains. When a main fails,
the shadow increases its execution rate to speed up recovery.

To reduce a shadow’s execution rate, Dynamic Voltage
and Frequency Scaling (DVFS) can be applied. Its effective-
ness, however, may be markedly limited by the granularity
of voltage control, the range of frequencies available, and the
negative effects on reliability [26]. An alternative approach
to DVFS is to collocate multiple shadows on a single
processor [7]. The desired shadow execution rate can be
achieved by controlling the collocation ratio, defined as the
number of shadows that time-share a processor. An example
of 3 shadowed sets, with a collocation ratio of 4, is depicted
in Figure 1. A shadowed set refers to a set of mains and their
collocated shadows.

1Equivalently, a spare processor can be used for this purpose.



Contrary to pure replication, shadow collocation reduces
the number of processors required to achieve fault-tolerance,
thereby reducing power and energy consumption. Further-
more, the collocation ratio can be adapted to reflect the
propensity of the system to failure. This flexibility, however,
comes at the increased cost of memory requirement at the
shared processor. It is to be noted that this limitation is not
intrinsic to Rejuvenating Shadows, as in-memory and multi-
level checkpointing also require additional memory to store
checkpoints. In this work, we only focus on collocation to
reduce shadow’s execution rate.

In the basic form of shadow replication, failures can
have a significant impact on the performance. Since a
shadow executes at a lower rate than its associated main,
a divergence will occur between the pair of processes. The
larger this divergence, the more time the lagging shadow will
need to “catch up”, which is needed to rejuvenate a failed
main. Failures can also impact the resilience of the system.
Upon failure of a main, the system can only rely on an
“orphan” shadow to complete the task. A trivial approach to
address this shortcoming is to associate a “suite” of shadows
with each main. Such an approach, however, is resource
wasteful and costly in terms of energy consumption. To
address the impact of divergence on system performance,
while maintaining a persistent resilience level against mul-
tiple failures, two techniques, leaping and rejuvenation, are
further explored below.

A. Leaping
The main objective of leaping is to ensure forward

progress in the presence of failure. As stated above, the
failure of a main may cause the remaining processes to
halt at a synchronization point, until the shadow associated
with the failed main catches up. This process can increase
significantly the time-to-completion of the task. Leaping
takes advantage of the idle time to synchronize the state
of the shadows with that of their non-failed mains. Leaping
eliminates current divergence between non-failed mains and
their associated shadows, with minimal computational and
communication overhead. As such, it reduces significantly
the recovery time of future failures. Leaping always takes
place between a main and its associated shadow, and thus
does not require global coordination. The process which
provides the leaping state is referred to as the leap-provider,
while the rolling-forward process which receives the leaping
state is referred to as the leap-recipient.

B. Rejuvenation
The main objective of rejuvenation is to enable the

system to maintain its intended level of resilience, in the
event of multiple failures2. Based on the shadow replication

2The case where both the main and shadow of a task fail simultaneously
is not discussed specifically, as the occurrence of such an event is highly
unlikely. Such failures can be handled by the shadow replication model by
associating a suite of shadows to each main process.

model, when a main fails, its associated shadow increases
its execution rate to catch up with the failed main. The
execution rate increase is achieved by terminating the col-
located shadows that are associated with the non-failing
mains in the shadowed set, and allocating the processor
to be used exclusively by the shadow of the failed main.
Although efficient in reducing failure recovery time, this
method reduces the execution of each task in the shadowed
set to a single instance, thereby increasing the vulnerability
of the system to subsequent failures.

The proposed approach to address this shortcoming is to
use the rescuer shadow, namely the shadow of the failed
main, to rejuvenate the failed main. Specifically, while the
rescuer shadow is executing at a high speed to reach the
state at which the main failed, a new process is launched
to assume the role of the main. Furthermore, rather than
starting the new process from its initial state, leaping is
invoked to synchronize the new process’ state with that of
the rescuer shadow. A direct implication of rejuvenation is
that none of the shadows collocated with the rescuer shadow
need to be terminated, but only suspended until the recovery
is complete (that is, until the rescuer shadow reaches the
state at which the main failed). In addition to restoring
the system to its intended resilience level, rejuvenation also
reduces the overall execution time.

Figure 2 illustrates the failure recovery process with
rejuvenation, assuming that a main Mi fails at time T0. In
order for the rescuer shadow Si to speed up, the shadows
collocated with Si are temporarily suspended. Meanwhile,
the failed processor is rebooted and then a new process is
launched for Mi. When, at T1, both Si catches up with the
state of Mi before its failure and a new Mi is launched,
leaping is performed to advance the new process to the
current state of Si.

Because of the failure of Mi, the other mains are blocked
at the next synchronization point, which is assumed to take
place shortly after T0. During the idle time, a leaping is
opportunistically performed to transfer state from each living
main to its shadow. Therefore, this leaping has minimal
overhead as it overlaps with the recovery, as shown in
Figure 2(b). Figure 2(c) shows that leaping for the shadows
collocated with Si are delayed until the recovery completes
at T1. After the leaping finishes at T2, all mains and shadow
resume normal execution, thereby bringing the system back
to its original level of fault tolerance.

Failure of a shadow can be addressed in a similar manner.
If a shadow processor fails, all the shadows in the corre-
sponding shadowed set are lost. To rejuvenate, the failed
processor is rebooted before new processes are launched to
replace the failed ones. It is to be noted that all the mains can
continue execution while rebooting the processor. When the
newly launched shadows become ready, leaping is invoked
to synchronize every shadow with its main.



(a) Faulty task

(b) Non-faulty tasks in different shadowed sets

(c) Non-faulty tasks in the same shadowed set

Figure 2. Recovery and rejuvenation after a main process fails.

IV. IMPLEMENTATION

This section presents the details of rsMPI, an implemen-
tation of Rejuvenating Shadows in MPI. Similar to rMPI
and RedMPI [11], [24], rsMPI is implemented as a separate
layer between MPI and user applications, and uses function
wrappers on top of the standard MPI profiling interface to
intercept MPI calls. During execution, rsMPI transparently
spawns the shadow processes during the initialization phase,
manages the coordination between main and shadow pro-
cesses, and guarantees order and consistency for messages
and non-deterministic MPI events.

A. MPI rank

A rsMPI world has 3 types of identities: mains, shad-
ows, and coordinators, which coordinate between mains
and shadows. A static mapping between rsMPI ranks and
application-visible MPI ranks is maintained so that each
process can retrieve its identity. For example, if the user
specifies N processes to run with collocation ratio of 4,
rsMPI will translate it into N + N + N/4 processes, with
the first N ranks being the mains, the next N ranks being
the shadows, and the last N/4 ranks being the coordinators,

Figure 3. Consistency protocol for Rejuvenating Shadows.

one for each 4 collocated shadows. Using the MPI profiling
interface, we added wrappers for MPI Comm rank() and
MPI Comm size(), so that each process (main or shadow)
gets its correct execution path.

B. Execution rate control

While each main executes on a separate processor at
maximum rate for HPC’s throughput consideration, shadows
are configured to collocate and execute at a slower rate
based on a user configuration file. Accordingly, rsMPI will
generate an MPI rankfile and provide it to the MPI runtime
to control process mapping. Note that rsMPI always maps
the main and shadow of the same task onto different nodes.
This is required to prevent a fault on one node from affecting
both a main and its associated shadow. To minimize resource
usage, each coordinator is collocated with the shadows in the
shadowed set. A coordinator performs minimal work, as its
main task is to simply handle incoming control messages
(discussed below). As such, the impact of the coordinator
on the execution rate of the collocated shadows is minimal.

C. Message passing and consistency

State consistency between mains and shadows is required
both during normal execution and following a failure. As
depicted in Figure 3, a protocol is used to enforce sequen-
tial consistency, i.e., each shadow sees the same message
order and operation results as its main. Instead of sending
messages from main to main and shadow to shadow [11],
we choose to let the main sender forward each message to
the shadow receiver. This allows us to speed up a single
shadow when a main fails. We assume that two copies of
the same message are sent in an atomic manner3.

As shadows execute slower than mains, forwarded mes-
sages accumulate. Currently, rsMPI relies on MPI runtime to
buffer these messages at the shadows. MPI Eager protocol
ensures that slower shadows do not block faster mains. We
are currently investigating our own flow control and buffer
management to gain better control.

Assuming that only MPI operations can introduce non-
determinism, the SYNC message shown in Figure 3 is

3This property can be ensured, for example, by using the NIC multicast
functionality of the network.



used to enforce consistency when necessary. For example,
MPI ANY SOURCE receive may result in different mes-
sage orders between a main and its shadow. To address this
issue, we serialize the receiving of MPI ANY SOURCE
messages by having the main finish the receiving and then
use a SYNC message to forward the message source to its
shadow, which then performs a normal receive from the
specific source. Collective communication in rsMPI uses
point-to-point communication in a binomial tree topology,
which demonstrates excellent scalability.

D. Coordination between mains and shadows

Each shadowed set has a coordinator process dedicated
to coordination between the mains and shadows in the set.
Coordinators do not execute application code, but just wait
for rsMPI defined control messages, and then carry out
the required coordination work accordingly. There are three
types of control messages: termination, failure, and leaping.
They corresponds to three actions:

• When a main finishes, the coordinator forces the asso-
ciated shadow to terminate.

• When a main fails, the coordinator temporarily speeds
up the associated shadow by suspending the other
collocated shadows, until the recovery is complete.

• When a main initiates a leaping, the coordinator triggers
leaping at the associated shadow.

To separate control messages from data messages, rsMPI
uses a dedicated MPI communicator for the control mes-
sages. This Control Communicator is created by the wrapper
of the MPI Init call. In addition, to ensure fast response and
minimize the number of messages, coordinators also use OS
signals to communicate with their collocated shadows.

E. Leaping

Different from Checkpointing where the process state is
saved, leaping directly transfers process state between a
main and its shadow. To reduce the size of data involved in
saving state, rsMPI uses a similar approach as application-
level checkpointing [27], [23], and requires users to identify
necessary data as process state using the following API:

void leap register state(void *addr, int count, \
MPI Datatype dt);

For each data set to be registered, three arguments are
needed: a pointer to the memory address of the data set,
the number of data items in the data set, and the datatype.
Application developer could use domain knowledge to iden-
tify only necessary state data, or use compiler techniques to
automate this process [28].

rsMPI uses MPI messages to transfer process state. Al-
though multiple data sets can be registered as a process’
state, only a single message needs to be transferred, as MPI
supports derived datatypes. To isolate state messages from
application messages, rsMPI uses the Control Communicator

to transfer process state. By using a coordinator to synchro-
nize the leaping and relying on MPI messages to rapidly
transfer state, the overhead of leaping is minimized.

To make sure a pair of main and shadow stay consistent
after a leaping, not only user-defined states should be
transferred, but also lower level states, such as program
counter and message buffers, need to be correctly updated.
Specifically, the leap-recipient needs to satisfy two require-
ments: 1) Discard all obsolete messages after the leaping;
2) Resume execution at the same point as the leap-provider.
We discuss our solutions below, under the assumption that
the application’s main body consists of a loop, which is true
in most HPC applications.

To correctly discard all obsolete messages, rsMPI borrows
the idea of “determinants” from message logging [14],
and requires every main and shadow to log the metadata
(i.e., MPI source, tag, and communicator) for all received
messages. Then during leaping, the metadata at the leap-
provider is transferred to the leap-recipient, so that the latter
can combine MPI probe and receive to remove the messages
that have been consumed by the former but not by itself.

To resume execution from the same point, we restrict
leaping to always occur at specific points, and use an internal
counter to make sure that both the leap-recipient and leap-
provider start leaping from the same point. For example,
when a main initiates a leaping, the coordinator will trigger
a specific signal handler at the associated shadow. The signal
handler does not carry out leaping, but sets a flag for leaping
and receives from its main a counter value that indicates the
leaping point. Only when both the flag is set and counter
value matches will the shadow start leaping. In this way, it
is guaranteed that after leaping the leap-recipient and leap-
provider will resume execution from the same point. To
balance the trade-off between implementation overhead and
flexibility, we choose MPI receive operations as the only
possible leaping points.

V. EVALUATION

We deployed rsMPI on a cluster of 30 nodes (600 cores)
for testing and benchmarking. Each node consists of a 2-
way SMPs with Intel Haswell E5-2660 v3 processors of
10 cores per socket (20 cores per node), and is configured
with 128 GB RAM. Nodes are connected via 56 GB/s FDR
InfiniBand.

Benchmarks from the Sandia National Lab Mantevo
Project and NAS Parallel Benchmarks (NPB) are used.
CoMD is a proxy for molecular dynamics application.
MiniAero is an explicit unstructured finite volume code
that solves the Navier-Stokes equations. Both MiniFE and
HPCCG are unstructured implicit finite element codes,
but HPCCG uses MPI ANY SOURCE receive operations
and can demonstrate rsMPI’s capability of handling non-
deterministic events. IS, EP, and CG from NPB represent



Figure 4. Comparison of execution time between baseline and rsMPI using
256 application-visible processes and collocation ratio of 2 for rsMPI.

integer sort, embarrassingly parallel, and conjugate gradi-
ent applications, respectively. These applications cover key
simulation workloads and represent both different commu-
nication patterns and computation-to-communication ratios.

We also implemented in-memory checkpointing [17] to
compare with rsMPI in the presence of failures. Same
as leaping in rsMPI, our application-level checkpointing
provides an API for process state registration. This API
requires the same parameters, but internally, it allocates
extra memory in order to store the state of a “buddy”
process. Another provided API is checkpoint(), which inserts
a checkpoint in the application code. For fairness, MPI
messages are used to transfer state between buddies. For both
rsMPI and checkpointing/restart, we assume a 60 seconds
rebooting time after a failure. All figures in this section show
the average of 5 runs with the standard deviation.

A. Measurement of runtime overhead

While the hardware overhead for rsMPI is straightforward,
the runtime overhead of the enforced consistency protocol
depend on applications. To measure this overhead we ran
each benchmark application linked to rsMPI and compared
the execution time with the baseline, where each application
runs with unmodified OpenMPI.

Figure 4 shows the comparison of the execution time
for the 7 applications in the absence of faults. All the
experiments are conducted with 256 application-visible pro-
cesses. That is, the baseline uses 256 MPI ranks, while
rsMPI uses 256 mains together with 256 shadows. From
the figure we can see that rsMPI has comparable execution
time to the baseline for all applications except IS. The
reason for the exception is that IS uses all-to-all commu-
nication and is heavily communication-intensive. We argue
that communication-intensive applications like IS are not
scalable, and as a result, they are not suitable for large-scale
HPC. For all other applications, the overhead varies from
0.64% (EP) to 2.47% (CoMD). Therefore, we conclude that
rsMPI’s runtime overheads are modest for applications that
exhibit a fair communication-to-computation ratio.

(a) HPCCG weak scalability

(b) CoMD weak scalability
Figure 5. Scalability test for number of processes from 1 to 256.
Collocation ratio is 2 for rsMPI.

B. Scalability

We also assessed the applications’ weak scalability, which
measures how the execution time varies with the number of
processes for a fixed problem size per process. Among the
seven applications, HPCCG, CoMD, and miniAero allow us
to configure the input for weak scaling test. The results for
miniAero are similar to those of CoMD, so we only show
the results for HPCCG and CoMD in Figure 5.

Comparing between Figure 5(a) and Figure 5(b), it is
obvious that HPCCG and CoMD have different weak scal-
ing characteristics. While the execution time for CoMD
increases by 8.9% from 1 process to 256 processes, the
execution time is almost doubled for HPCCG. However,
further analysis shows that from 16 to 256 processes, the
execution time increases by only 2.5% for CoMD, and 1.0%
for HPCCG. We suspect that the results are not only affected
by the scalability of the application, but also impacted by
other factors, such as cache and memory contention on
the same node, and network interference from other jobs
running on the cluster. To predict the overhead at exascale,
we applied curve fitting to derive the correlation between
runtime overhead and the number of processes. At 220

processes, it is projected that the overhead is 3.1% for CoMD
and 7.6% for HPCCG.

C. Performance under failures

As one main goal of this work is to achieve fault tolerance,
an integrated fault injector is required. To produce failures
in a manner similar to naturally occurring process failures,
the failure injector is designed to be distributed and co-exist



Figure 6. Execution time of HPCCG with a single failure injected at
various time, normalized to that of the failure-free baseline.

with all rsMPI processes. Failure is injected by sending a
specific signal to a randomly picked target process.

We assume that the underlying hardware platform has a
Reliability, Availability and Serviceability (RAS) system that
provides failure detection. In our test system, we emulate the
RAS functionality by associating a signal handler with every
process. The signal handler catches failure signals sent from
the failure injector, and uses a rsMPI defined failure message
via a dedicated communicator to notify all other processes.

The first step was to test the effectiveness of leaping.
Figure 6 shows the execution time of HPCCG with a single
failure injected at a specific time, measured as a proportion
of the total execution of the application. The execution
time is normalized to that of the failure-free baseline. The
blue solid line and red dashed line represent rsMPI with
collocation ratio of 2 and 4, respectively. For simplicity, they
are referred to as rsMPI 2 and rsMPI 4 in the following text.

As shown in Figure 6, rsMPI’s execution time increases
with the failure occurrence time, regardless of the collocation
ratio. The reason is that recovery time in rsMPI is propor-
tional to the amount of divergence between mains and shad-
ows, which grows with the execution. Another factor that
determines the divergence is the shadow’s execution rate.
The slower the shadows execute, the faster the divergence
grows. As a result, rsMPI 2 can recover faster than rsMPI 4,
and therefore achieves better execution time.

The results in Figure 6 suggests that rsMPI is better suited
to environments where failures are frequent. This stems from
the fact that, due to leaping, the divergence between mains
and shadows is eliminated after every failure recovery. To
demonstrate the above analysis, we compare rsMPI with
checkpointing under various failure rates. To run the same
number of application-visible processes, rsMPI needs more
nodes than checkpointing to host the shadow processes. For
fairness, we take into account the extra hardware cost for
rsMPI by defining the following metric:

Weighted execution time = Te×Sp,

where Te is the wall-clock execution time and Sp is the
projected speedup. For example, we measured that the
speedup of HPCCG from 128 processes to 256 processes
is 1.88, and rsMPI 2 needs 1.5 times more nodes than
checkpointing, so the projected speedup is 1.5× 1.88

2 = 1.41.

(a) Wall-clock execution time

(b) Weighted execution time

Figure 7. Comparison between checkpointing and rsMPI with various
number of failures injected to HPCCG. 256 application-visible processes,
10% checkpointing interval.

In this analysis, we set the checkpointing interval to 0.1T ,
where T is the total execution time. To emulate failures, for
both checkpointing and rsMPI, we randomly inject over T
a number of faults, K, ranging from 5 to 30. This fault rate
corresponds to a processor’s MTBF of NT/K, where N is
the number of processors. When using a system of 64,000
processors and executing over 4 hours, injecting 10 faults
corresponds to a processor’s MTBF of 3 years.

Figure 7 compares checkpointing and rsMPI, based on
both wall-clock and weighted execution time. Ignoring the
hardware overhead, Figure 7(a) shows that, when the number
of failures is small (e.g., 5 failures), checkpointing slightly
outperforms rsMPI. As the number of failures increases,
however, rsMPI achieves significantly higher performance
than checkpointing. For example, when the number of fail-
ures is 20, rsMPI 2 saves 28.7% in time compared to check-
pointing. The saving rises up to 39.3%, when the number
of failures is increased to 30. Compared to checkpointing,
rsMPI 4 reduces the execution time by 19.7% and 34.8%,
when the number of failures are 20 and 30, respectively.

Incorporating hardware overhead, Figure 7(b) compares
the weighted execution time between checkpointing and
rsMPI. As expected, checkpointing is better when the num-
ber of failures is small (e.g., 5 failures). When the number
of failures increases, however, checkpointing loses its ad-
vantage quickly. At 30 failures, for example, rsMPI 2 and
rsMPI 4 are 19.3% and 31.3% more efficient than check-
pointing, respectively. Note that, when comparing rsMPI 2



and rsMPI 4, the former shows higher performance with
respect to wall-clock execution time, while the latter is better
with respect to weighted execution time.

VI. CONCLUSION AND FUTURE WORK

In this paper, we propose Rejuvenating Shadows as a
novel power-aware fault tolerance model, which guarantees
forward progress, maintains consistent level of resilience,
and minimizes implementation complexity and runtime over-
head. Empirical experiments demonstrated that the Rejuve-
nating Shadows model outperforms in-memory checkpoint-
ing/restart in both execution time and resource utilization,
especially in failure-prone environments.

Failure-induced leaping has proven to be critical in re-
ducing the divergence between a main and its shadow,
thus reducing the recovery time for subsequent failures.
Consequently, the time to recover from a failure increases
with failure intervals. Based on this observation, a proactive
approach is to “force” leaping when the divergence between
a main and its shadow exceeds a specified threshold. In our
future work, we will further study this approach to determine
what behavior triggers forced leaping in order to optimize
the average recovery time.

ACKNOWLEDGMENT

This research is based in part upon work supported by
the Department of Energy under contract DE-SC0014376.
This research was supported in part by the University
of Pittsburgh Center for Research Computing through the
resources provided. This work used the Extreme Science
and Engineering Discovery Environment (XSEDE), which
is supported by National Science Foundation grant num-
ber OCI-1053575. Specifically, it used the Bridges system,
which is supported by NSF award number ACI-1445606, at
the Pittsburgh Supercomputing Center (PSC).

REFERENCES

[1] K. Bergman, S. Borkar, D. Campbell et al., “Exascale com-
puting study: Technology challenges in achieving exascale
systems,” DARPA IPTO, Tech. Rep, vol. 15, 2008.

[2] E. N. Elnozahy and J. S. Plank, “Checkpointing for peta-scale
systems: a look into the future of practical rollback-recovery,”
TDSC, vol. 1, no. 2, pp. 97–108, April 2004.

[3] J. F. Bartlett, “A nonstop kernel,” in ACM SIGOPS Operating
Systems Review. ACM, 1981, pp. 22–29.

[4] B. Mills, T. Znati, R. Melhem, K. B. Ferreira, and R. E. Grant,
“Energy consumption of resilience mechanisms in large scale
systems,” in PDP’14. IEEE, pp. 528–535.

[5] B. Mills, “Power-aware resilience for exascale computing,”
Ph.D. dissertation, University of Pittsburgh, 2014.

[6] X. Cui et al., “Shadow replication: An energy-aware, fault-
tolerant computational model for green cloud computing,”
Energies, vol. 7, no. 8, pp. 5151–5176, 2014.

[7] X. Cui, T. Znati, and R. Melhem, “Adaptive and power-
aware resilience for extreme-scale computing,” in Scal-
com’16, Toulouse, France, July 18-21 2016.

[8] K. M. Chandy and L. Lamport, “Distributed snapshots: De-
termining global states of distributed systems,” ACM Trans.
Comput. Syst., vol. 3, no. 1, pp. 63–75, Feb. 1985.

[9] R. E. Strom et al., “Optimistic recovery in distributed sys-
tems,” ACM Trans. Comput. Syst., vol. 3, pp. 204–226, 1985.

[10] A. Gainaru, F. Cappello, M. Snir, and W. Kramer, “Fault
prediction under the microscope: A closer look into HPC
systems,” in SC’12, pp. 77:1–77:11.

[11] K. Ferreira, J. Stearley, J. H. Laros, R. Oldfield et al.,
“Evaluating the viability of process replication reliability for
exascale systems,” in SC’11, pp. 44:1–44:12.

[12] P. Hargrove and J. Duell, “Berkeley lab checkpoint/restart
(blcr) for linux clusters,” in Journal of Physics: Conference
Series, vol. 46, no. 1, 2006, p. 494.

[13] A. Guermouche et al., “Uncoordinated checkpointing without
domino effect for send-deterministic MPI applications,” in
IPDPS, May 2011, pp. 989–1000.

[14] E. Elnozahy, L. Alvisi et al., “A survey of rollback-recovery
protocols in message-passing systems,” ACM Computing Sur-
veys, vol. 34, no. 3, pp. 375–408, 2002.

[15] S. Gao, B. He, and J. Xu, “Real-time in-memory check-
pointing for future hybrid memory systems,” in International
Conference on Supercomputing. ACM, 2015, pp. 263–272.

[16] S. Agarwal et al., “Adaptive incremental checkpointing for
massively parallel systems,” in ICS 04, St. Malo, France.

[17] G. Zheng, L. Shi, and L. V. Kalé, “FTC-Charm++: an in-
memory checkpoint-based fault tolerant runtime for Charm++
and MPI,” in Cluster Computing. IEEE, 2004, pp. 93–103.

[18] A. Moody, G. Bronevetsky, K. Mohror, and B. Supinski,
“Design, modeling, and evaluation of a scalable multi-level
checkpointing system,” in SC’10, pp. 1–11.

[19] R. Riesen, K. Ferreira, J. Stearley, R. Oldfield et al., “Re-
dundant computing for exascale systems,” Sandia National
Laboratories, Tech. Rep., 2010.

[20] F. Cappello, “Fault tolerance in petascale/ exascale systems:
Current knowledge, challenges and research opportunities,”
IJHPCA, vol. 23, no. 3, pp. 212–226, 2009.

[21] C. Engelmann and S. Böhm, “Redundant execution of HPC
applications with MR-MPI,” in PDCN, 2011, pp. 15–17.

[22] J. Elliott et al., “Combining partial redundancy and check-
pointing for HPC,” in ICDCS ’12, Washington, DC, US.

[23] X. Ni, E. Meneses, N. Jain, and L. V. Kalé, “ACR: Automatic
checkpoint/restart for soft and hard error protection,” in
SC’13. New York, NY, USA: ACM, pp. 7:1–7:12.

[24] D. Fiala, F. Mueller, C. Engelmann et al., “Detection and
correction of silent data corruption for large-scale high-
performance computing,” in SC’12, Los Alamitos, CA, USA.

[25] R. D. Schlichting and F. B. Schneider, “Fail-stop processors:
An approach to designing fault-tolerant computing systems,”
ACM Trans. Comput. Syst., vol. 1, no. 3, pp. 222–238, 1983.

[26] S. Eyerman and L. Eeckhout, “Fine-grained DVFS using on-
chip regulators,” ACM Trans. Archit. Code Optim., vol. 8,
no. 1, pp. 1:1–1:24, Feb. 2011.

[27] A. Beguelin et al., “Application level fault tolerance in
heterogeneous networks of workstations,” Journal of Parallel
and Distributed Computing, vol. 43, pp. 147–155, 1997.

[28] G. Bronevetsky, D. Marques et al., “Compiler-enhanced
incremental checkpointing for OpenMP applications,” in
IPDPS, May 2009, pp. 1–12.


