
Enforcing Policy and Data Consistency of Cloud

Transactions

Marian K. Iskander Dave W. Wilkinson Adam J. Lee Panos K. Chrysanthis

Department of Computer Science, University of Pittsburgh

{marianky, dwilk, adamlee, panos}@cs.pitt.edu

Abstract—In distributed transactional database systems de-

ployed over cloud servers, entities cooperate to form proofs

of authorizations that are justified by collections of certified

credentials. These proofs and credentials may be evaluated and

collected over extended time periods under the risk of having

the underlying authorization policies or the user credentials

being in inconsistent states. It therefore becomes possible for a

policy-based authorization systems to make unsafe decisions that

might threaten sensitive resources. In this paper, we highlight the

criticality of the problem. We then present the first formalization

of the concept of trusted transactions when dealing with proofs

of authorizations. Accordingly, we define different levels of

policy consistency constraints and present different enforcement

approaches to guarantee the trustworthiness of transactions

executing on cloud servers. We propose a Two-Phase Validation

Commit protocol as a solution, that is a modified version

of the basic Two-Phase Commit protocols. We finally provide

performance analysis of the different presented approaches to

guide the decision makers in which approach to use.

Keywords-Cloud databases, authorization policies, consistency,

distributed transactions, atomic commit protocol

I. Introduction

Cloud computing has recently emerged as a computing

paradigm in which storage and computation can be outsourced

from organizations to next generation data centers hosted by

companies such as Amazon, Google, Yahoo, and Microsoft.

Such companies have gained a remarkable success by provid-

ing multiple services and paradigms referred to as Infrastruc-

ture as a Service (IaaS), Database as a Service (DaaS), and

Software as a Service (SaaS). This frees organizations that

rely on the cloud from requiring expensive infrastructure and

expertise in-house, and instead make use of cloud providers

to maintain, support, and broker access to high-end resources.

From an economics perspective, cloud consumers can save

huge IT capital investments and be charged on the basis of a

pay-only-for-what-you-use pricing model.

One of the most appealing aspects of cloud computing is

its elasticity, which provides an illusion of infinite, on-demand

resources [1]. This elasticity provides an attractive environ-

ment for highly-scalable multi-tiered applications. However,

this can create additional challenges for back-end transactional

database systems, which were designed without elasticity in

mind. Despite the efforts of key-value stores like Amazon’s

SimpleDB, Dynamo, and Google’s Bigtable to provide scal-

able access to huge amounts of data, transactional guarantees

remain a bottleneck [2].

To provide scalability and elasticity, cloud services often

make heavy use of replication to ensure consistent perfor-

mance and availability. As a result, many cloud services rely

on the notion of eventual consistency when propagating data

throughout the system. This consistency model is a variant of

weak consistency that allows data to be inconsistent among

some replicas during the update process, but ensures that

updates will eventually be propagated to all replicas. This

makes it difficult to strictly maintain the ACID guarantees in

the face of data replication over large geographic distance, as

the ’C’ (consistency) part of ACID is sacrificed to provide

reasonable availability [3].

In systems that host sensitive resources, accesses are pro-

tected via authorization policies that describe the conditions

under which users should be permitted access to resources.

These policies describe relationships between the system prin-

cipals, as well as the certified credentials that users must

provide to attest to their attributes. In a transactional database

system that is deployed in a highly distributed and elastic sys-

tem such as the cloud, policies would typically be replicated—

very much like data—among multiple sites, often following

the same weak or eventual consistency model. It therefore

becomes possible for a policy-based authorization system to

make unsafe decisions using stale policies.

Interesting consistency problems can arise as transactional

database systems are deployed in elastic cloud environments

and use policy-based authorization systems to protect sen-

sitive resources. In addition to handling consistency issues

amongst database replicas, we must also handle two types

of security inconsistency conditions. First, the system may

suffer from policy inconsistencies during policy updates due to

the relaxed consistency model underlying most cloud services.

For example, it is possible for several versions of the policy

to be observed at multiple sites within a single transaction,

leading to inconsistent (and likely unsafe) access decisions

being made during the transaction. Second, it is possible for



2

Bob

Read request

CompuMe rep?

Write request

Location ? OpRegion?

Send credentials

Access granted + read 

credential 

Bob has been assigned to a 

different operational region, 

OpRegion credential is revoked

Read credentials ?

Send read credentials

Access granted

Begin Transaction

CompuMe credentials issued

Customers DB 
(enforcing policy P)

Inventory DB
(enforcing policy P)

Policy P changes to P’, 

changes are not reflected 

to all sites

Commit Transaction

Fig. 1. A graphical representation of Bob’s interaction with the system

external factors to cause user credential inconsistencies over

the lifetime of a transaction [4]. For instance, a user’s login

credentials could be invalidated or revoked after collection

by the authorization server, but before the completion of the

transaction. In this paper, we address this confluence of data,

policy, and credential inconsistency problems that can emerge

as transactional database systems are deployed to the cloud.

In doing so we make the following contributions:

• We highlight, for the first time in the literature, the

criticality of the problem. We then describe possible

problems that can arise in the context of a motivational

example (Section II).

• We present the first formalization of the concept of trusted

transactions. Trusted transactions are those transactions

that do not violate credential or policy inconsistencies

over the lifetime of the transaction. We then present

a more general term, safe transactions, that we use to

identify transactions that conform to the ACID properties

of distributed database systems and are trusted in terms

of the validity of the policies evaluation (Section III).

• Since achieving ACID properties in distributed transac-

tional databases has been extensively studied [5], [6], our

focus in this paper is how to achieve trusted transac-

tions. Accordingly, we define different levels of policy

consistency constraints as well as different enforcement

approaches to guarantee the trustworthiness of transac-

tions executing on cloud servers (Sections IV).

• We propose a solution that involves an adaptation of

the Two-Phase Commit (2PC) protocol to enforce trusted

transactions, which we refer to as Two-Phase Validation

Commit (2PVC) protocol. The resulting protocol ensures

that a transaction is safe, as it ensures policy and cre-

dential consistency along with ensuring data consistency

(Section V).

• We present a performance analysis study of our proposed

approaches to guide the decision makers in which ap-

proach to use in practice (Section VI).

Finally, Section VII describes previous related work, while

Section VIII presents our conclusions.

II. Motivating Example

Figure 1 illustrates one case in which inconsistencies among

policies and/or credentials can cause unsafe authorizations

to occur. In this scenario, Bob is attempting to access a

customer database that requires him to prove that he is a

sales representative for his company (CompuMe), that he is

currently assigned to sell within a particular geographical

region, and that he is currently located within that region. Bob

constructs such a proof of authorization, which is then verified

by the customer database. The database then permits access,

and returns Bob a credential indicating that he is permitted to

read from the database.

Bob is then assigned to a different operational region, and

the policy protecting resources within CompuMe is changed.

However, since CompuMe makes use of an eventual consis-

tency model for propagating policy changes, this new policy

is not immediately propagated to all databases. When Bob

attempts to access the inventory database, he is required to

either satisfy (the original) policy, or present a previously-

issued “read” credential indicating that the policy was satisfied.

Bob presents his read credential, and is then granted access

to the database. Note that Bob’s second access was granted

(i) using an old version of the access control policy and (ii)

under the false pretense that Bob was still assigned to a valid

operational region.

In general, many such problems can be encountered due

to policy and/or credential inconsistencies. If any problems

of policy consistency are not alleviated, the company or indi-

vidual may suffer. The company may leak information about

customers and face harsh penalties and loss of credibility. The

individual may lose commission or other benefits for a sale.

III. System Assumptions and Problem Definition

A. System Model

We assume a cloud infrastructure consisting of a set of S

servers, where each server is responsible for hosting a subset

D of all data items D belonging to a specific application

domain (D ⊂ D). Users interact with the system by submitting

queries or update requests encapsulated in ACID transactions.

Transactions submitted to the system are first forwarded to

a Transaction Manager (TM) that distributes the queries to

the involved servers and coordinates their execution. Multiple

TMs could be invoked as the system workload increases for

load balancing, but each transaction is handled by only one

TM. We denote each transaction as T = q1, q2, . . . , qn, where



3

DBs and Policies
DBs and Policies

DBs and Policies

Transactions

Verifiable Trusted Third 

Parties (CAs)

Transaction 

Managers

(TMs)

Fig. 2. Interaction among the system components

qi ∈ Q is a single query/update belonging to the set of all

queries Q. The start time of each transaction is denoted by

α(T ), and the time at which the transaction finishes execution

and is ready to commit is denoted by ω(T ). Without loss of

generality, we assume that queries belonging to a transaction

execute sequentially and without any restriction on the servers.

That is, two queries of the same transaction may execute on the

same server at different instances in time but not concurrently.

These assumptions simplify the way we present our model and

definitions, but does not affect the correctness or the validity

of our consistency definitions.

Let P denote the set of all authorization policies, each autho-

rization policy P : P ∈ P enforced by a server si governing the

access to the subset of data items D is defined as Psi
(D), where

the policy P is a mapping such that P : S× 2D → 2R × A×N.

The value R indicates the set of inference rules used to define

the authorization policy, A refers to the authorization policy

administrator who is in charge of dictating an application’s

policy to the cloud servers, and N is the set of natural numbers

and is used to identify the policy version v.

We will refer to the set of all credentials as C. We assume

that users’ certified credentials are issued by an arbitrary

number of Certificate Authorities (CAs) that exist in the

system. We assume that each CA offers an online method that

allows any server to check the current status of a particular

credential issued by the CA [7]. Given a credential ck ∈ C,

α(ck) denotes the time at which the credential was issued by

the CA, while ω(ck) denotes the credential expiration time.

Credentials can prematurely expire if they are revoked, and

they can only be revoked by the issuing CA. Different cloud

servers can also issue access credentials that act as capabilities

allowing the user to continue submitting queries to other

servers during the transaction lifetime (as was the case with

Bob’s read credential in Section II). Servers can verify access

credentials issued by each other.

We assume that a transaction does not fork to other sub-

transactions. This assumption is necessary to simplify the

proof of correctness of our proposed scheme as presented later

in Section V. Transactions also do not externalize any data

items to the users until commit time. Figure 2 illustrates the

interaction among the different system components.

We now present a formal definition of a proof of autho-

rization. Let fsi
= 〈qi, si, Psi

(m(qi)), ti,C〉, denote the proof of

authorization evaluated at server si, where qi is a query defined

over a set of read/write requests submitted to that server. Psi

denote the proofs of authorizations enforced by server si and

belonging to the same administrative domain A. Function m

is a mapping such that m : Q → 2D, that is, m identifies the

set of data items that are being touched by query q. Time ti is

the time instance at which the proof of authorization is being

evaluated, and finally C is a set of credentials presented by

the querier to complete the proof of authorization such that

C ⊆ C.

Let F denote the set of all proofs of authorizations, and the

set TS contain all possible timestamps. The validity of each

proof of authorization f ∈ F at time instance t is evaluated

using the predicate eval( f , t) such that eval : F ×TS → B. The

boolean sign is true if the proof of authorization is valid. The

validity of a proof of authorization is asserted in two cases:

1) (Credentials are syntactically and semantically valid)

According to the definitions in [4], a credential ck is

syntactically valid if the following conditions hold: (i) it

is formatted properly, (ii) it has a valid digital signature,

(iii) the time α(ck) has passed, and (iv) the time ω(ck)

has not yet passed. A credential ck issued at time ti

is semantically valid at time t if an online method of

verifying ck ’s status indicates that ck was not revoked

at time t′ and ti ≤ t′ ≤ t.

2) (The inference rules are satisfiable) A policy is a set

of inference rules that are encoded by policy makers to

capture systems access control regulations. Given policy

P, and user credentials C, if the inference rules of the

policy can be satisfied using the user credentials, then

the proof of authorization is said to be valid and the

access is granted accordingly.

B. Problem Definition

As we mentioned earlier, a safe transaction is a more

general term for a transaction that satisfies the correctness

properties of proofs of authorizations, in which case we refer

to as a trusted transaction, and also satisfies the data integrity

constraints. Since data integrity and consistency has been

extensively studied within the distributed database community,

in this section we focus on defining the new concept of trusted

transaction.



4

Since transactions are executed over time, the state informa-

tion of the credentials and the policies enforced by different

servers are subject to changes at any time instance, therefore

it becomes important to introduce precise definitions for the

different consistency levels that could be achieved within a

transactions lifetime. These consistency models strengthen the

trusted transaction definition by defining the environment in

which policy versions are consistent relative to the rest of the

system. Before we do that, we define a transaction’s view in

terms of the different proofs of authorizations evaluated during

the lifetime of a particular transaction.

Definition 1: (View) A transaction’s view VT is the set of

proofs of authorizations observed during the lifetime of a

transaction [α(T ), ω(T )] and defined as VT = { fsi
| fsi

=

〈qi, si, Psi
(m(qi)), ti,C〉 ∧ qi ∈ T }. _

Following from Definition 1, a transaction’s view is built

incrementally as more proofs of authorizations are being

evaluated by servers during the transaction execution.

We now present two increasingly more powerful definitions

of consistencies within transactions.

Definition 2: (View Consistency) A view VT =

{〈qi, si, Psi
(m(qi)), ti,C〉, . . . , 〈qn, sn, Psn

(m(qn)), tn,C〉} is

view consistent, or φ-consistent, if VT satisfies a predicate

φ-consistent that places constraints on the versioning of the

policies such that φ-consistent(VT )↔ ∀i, j : ver(Psi
) = ver(Ps j

)

for all policies belonging to the same administrator A, where

function ver is defined as ver : P→ N. _

With a view consistency model, the policy versions should

be internally consistent across all servers involved in the

transaction. That is, a snapshot of the system is what is used to

evaluate the decision of a trusted transaction with the servers

agreeing among themselves. The view consistency model is

weak in that the policy version agreed upon by the subset

of servers within the transaction may not be the latest policy

version v. It may be the case that a server outside of the S

servers has a policy P that belongs to the same administrative

domain A and with a version v′ > v. A more strict consistency

model is the global consistency and is defined as follows.

Definition 3: (Global Consistency) A view

VT = {〈qi, si, Psi
(m(qi)), ti,C〉, . . . , 〈qn, sn, Psn

(m(qn)), tn,C〉}

global consistent, or ψ-consistent, if VT satisfies a predicate

ψ-consistent that places constraints on the versioning of the

policies such that ψ-consistent(VT ) ↔ ∀i : ver(Psi
) = ver(P)

for all policies belonging to the same administrator A, and

function ver follows the same aforementioned definition,

while ver(P) refers to the latest policy version. _

With a global consistency model, policies used to evaluate

the proofs of authorizations during a transaction execution

s1

s2

s3

: query start time

: proof of authorization*

time

*

*
*

�(T)�(T)

Fig. 3. Deferred proofs of authorization

among S servers should match the latest policy version among

the entire policy set P, for all policies enforced by the same

administrator A.

Given the above definitions, we now have a precise vocab-

ulary for defining the conditions necessary for a transaction to

be asserted as “trusted”.

Definition 4: (Trusted Transaction) Given a transaction T =

{q1, q2, . . . , qn} and its corresponding view VT , T is trusted iff

∀ fsi
∈VT : eval( fsi

, t), at some time instance t : α(T ) ≤ t ≤

ω(T )∧ (φ-consistent(VT ) ∨ψ-consistent(VT )) _

Following from Definition 4, a safe transaction is a trans-

action that is both trusted and satisfies the data integrity

constraints. A safe transaction is allowed to commit, while

an unsafe transaction is forced to rollback.

IV. Trusted Transactions Enforcement

In this section, we present several approaches for enforcing

trusted transactions. We show that each approach offers differ-

ent guarantees during the course of executing transactions over

cloud servers. This indicates that, like many other aspects of

distributed proving and consistency guarantees, the choice of

which approach to use is likely to be a strategic choice made

independently by each application. We delay all discussions

pertaining to the trade-offs to be considered when making the

choice until section VI-B. We now present our approaches

starting from the most permissive and gradually all the way

to the least permissive approach.

A. Deferred Proofs of Authorization

Definition 5: (Deferred Proofs of Authorization) Given a

transaction T and its corresponding view VT , T is trusted

under the deferred proofs of authorization approach, iff at

commit time ω(T ), ∀ fsi
∈VT : eval( fsi

, ω(T ))∧ (φ-consistent(VT )

∨ψ-consistent(VT )) _

Deferred proofs of authorization present an optimistic sys-

tem with weaker authorization guarantees, since different

portions of the transaction are allowed to execute without

being validated against the access policies. It is only at

commit time when the proofs of authorizations are evaluated



5

s1

s2

s3

: query start time

: proof of authorization*

time

*

*
*

�(T)�(T)

*

*

*

Fig. 4. Punctual proofs of authorization

simultaneously, that is, the proof trees are constructed and

credentials are syntactically and semantically validated at the

end point of the transaction. Accordingly, a decision is made

whether the transaction is trusted or not. Note that a deferred

proof of authorization has the choice of enforcing either view

or global consistency from Definitions 2 and 3 at commit time.

The choice of which consistency level to enforce is a choice

to be made by applications based on the required trust level.

Figure 3 shows a scenario where three servers s1, s2, and s3

are involved in the execution of a transaction. The horizontal

lines define the transaction lifetime, and the dots represent the

arrival time of a query to each server. The stars indicate the

times at which each server validates a proof of authorization.

The vertical dotted line represents an enforcement of either

a view consistency among the three servers or a global

consistency between all servers. As shown in this figure, the

deferred proofs of authorizations requires only that proofs are

evaluated at the transaction commit time using either view or

global consistency.

By employing deferred proofs of authorizations, transac-

tions are most likely to execute faster but on the expense

of risking a transaction to be forced to rollback after it

has proceeded till the commit time if it violates the trusted

transaction condition.

B. Punctual Proofs of Authorization

Definition 6: (Punctual Proofs of Authorization) Given a

transaction T and its corresponding view VT , T is trusted

under the Punctual proofs of authorization approach, iff at

any time instance ti : α(T ) ≤ ti ≤ ω(T ) ∀ fsi
∈VT : eval( fsi

, ti) ∧

eval( fsi
, ω(T ))∧ (φ-consistent(VT ) ∨ψ-consistent(VT )) _

Punctual proofs of authorizations present a more proactive

approach in which the proofs of authorizations are evaluated

instantaneously whenever a query is being handled by a server.

A re-evaluation of all the proofs of authorizations at commit

time is mandatory to ensure that throughout the window of

execution of the transaction, policies were not updated in a

way that would invalidate a previous proof, and/or credentials

were not invalidated.

s1

s2

s3

: query start time

: proof of authorization*

time

*

*
*

�(T)�(T)

*

*

*

Fig. 5. Incremental Punctual proofs of authorization

Using this approach, early decisions on whether a trans-

action should proceed or rollback could be made based on

instantaneous evaluations of the proofs. Early detections of

unsafe transactions can save the system from going into

expensive undo operations.

As shown in Figure 4, Punctual proofs of authorizations

do not impose any restrictions on the freshness of the policies

used by the servers to evaluate the proofs during the transac-

tion execution. It is only at commit time when the proofs of

authorizations are re-evaluated that either view consistency or

global consistency are enforced. Hence, and due to the weak

consistency paradigm on which cloud servers operate, a server

might evaluate a proof based on an old version of a policy and

in that case no guarantee that the decision made by that server

is valid or invalid. As a consequence, servers might have false

negative decisions and deny access to queries, and on the other

hand, false positive decisions could also be made. Therefore,

we propose two more restrictive approaches, that if combined

with global consistency can avoid the false positive and false

negative decisions.

C. Incremental Punctual Proofs of Authorization

Before we define the Incremental Punctual proofs of autho-

rization approach, we define a view instance, which is a view

snapshot at a specific time instance.

Definition 7: (View Instance) A view instance VT
ti
⊆ VT is

defined as VT
ti
= { fsi

| fsi
= 〈qi, si, P

A
si

(m(qi)), t,C〉 ∈ VT∧t ≤ ti},

∀t, ti : α(T ) ≤ t ≤ ti ≤ ω(T ). _

Informally, a view instance VT
ti

is the subset of all proofs

of authorizations evaluated by servers involved in transaction

T up till the time instance ti.

Definition 8: (Incremental Punctual Proofs of Authoriza-

tion) Given a transaction T and its corresponding view VT , T is

trusted under the Incremental Punctual proofs of authorization

approach, iff at any time instance ti : α(T ) ≤ ti ≤ ω(T ), ∀ fsi
∈VT

ti

: eval( fsi
, ti)∧ (φ-consistent(VT

ti
) ∨ψ-consistent(VT

ti
)) _

Incremental Punctual proofs of authorizations develop a

stronger conception of trusted transactions in such that a



6

s1

s2

s3

: query start time

: proof of authorization*

time

*

*
*

�(T)�(T)

*

*

*
*
**

Fig. 6. Continuous proofs of authorization

transaction is not allowed to proceed unless the desired level

of the policy consistency at each server is achieved. In Figure

5, at every time instance where a proof of authorization

is evaluated a vertical line is drawn to indicate that some

consistency level among the servers is required, this could be

either a view consistency or a global consistency.

Without loss of generality in Figure 5, if the first server that

starts executing the transaction has the latest policy version,

in such case it is server s1, all other servers (s2, s3) will be

forced to have a consistent view with the first server before

they can proceed with evaluating their proofs of authorization.

In such a scenario, we have the guarantee that no false positive

or false negative authorization decisions will be made by any

of those servers. On the other hand, if the first server s1 does

not have the latest version, the proof of authorization at that

server is risked to be evaluated using an older policy. Note that

in this scenario if any of the later servers has a newer policy

version, the consistency condition will not be satisfied and the

transaction will be forced to rollback, saving the transaction

from doing any further untrusted authorizations.

Finally, we present the least pervasive approach which we

call Continuous proofs of authorizations. In this approach

proofs of authorizations evaluated during the transaction exe-

cution are re-evaluated at each time instance when a new proof

has to be evaluated. That is, the transaction is not allowed to

proceed if at any time instance an inconsistency among the

policies and/or credentials is captured. Following is the formal

definition for this approach.

D. Continuous Proofs of Authorization

Definition 9: (Continuous Proofs of Authorization) A trans-

action T is declared trusted under the Continuous approach,

iff ∀1≤i≤n∀1≤ j≤i : eval( fsi
, ti) = true ∧ eval( fs j

, ti) = true

∧ (φ-consistent(VT
ti

) ∨ψ-consistent(VT
ti

)) at any time instance

t : α(T ) ≤ ti ≤ ω(T ) _

The stronger guarantees that this approach offers arise from

the fact that view and global consistencies are not enough

to guarantee that the proofs of authorizations are valid at all

times. If credentials are prematurely revoked, (as was the case

with Bob’s OpRegion credential that was revoked between the

two different queries as shown in Section II), a re-evaluation of

the proofs of authorization would be necessary to capture such

situations. In Continuous proofs of authorizations, at every

time instance when an evaluation of a proof of authorization

is being made, all previous proofs of authorizations are forced

to be re-evaluated before the transaction can proceed. If any of

the evaluations fail at any time instance, the entire transaction

is forced to rollback. Figure 6 illustrates the Continuous proofs

of authorizations.

Once again, the decision of which approach to adopt is to

be handed to the policy administrators. As with any trade-off,

there is no free lunch, and the stronger the safety guarantees

given by an approach, the more the system has to pay in terms

of communication and delay overheads. Further discussion of

performance issues will be presented in Section VI-B.

V. Implementing Safe Transactions

A safe transaction is a transaction that is both trusted (i.e.,

satisfies the correctness properties of proofs of authorizations)

and database correct (i.e., satisfies the data integrity con-

straints). In this section, we will first describe an algorithm that

provides for trusted transactions. Then, we expand to satisfy

safe transactions. Finally, we show how these algorithms can

be used to implement the various approaches discussed in

Section IV.

A. Two-Phase Validation Algorithm

A common characteristic of our proposed approaches to

achieve trusted transactions is the need for policy consistency

validation at the end of a transaction. That is, in order for a

trusted transaction to commit, its TM needs to determine the

consistency of the definitions among the servers participating

in the transaction. Toward this, we propose a new algorithm

called Two-Phase Validation (2PV).

As the name implies, 2PV operates in two phases: the col-

lection phase and the validation phase. During the collection

phase, the TM first sends a Prepare-to-Validate message to

each participant. In response to this message, each participant

(1) evaluates the proofs for each query of the transaction using

the latest policies it has available and (2) sends a reply back

to the TM containing the truth value (TRUE/FALSE) of those

proofs along with the version number and policy identifier

for each policy used in the proof evaluation. Further, each

participant server keeps track of its reply (i.e., the state of

each query) which include the id of the TM (TMid) and the

id of the transaction (Tid) to which the query belongs along

with a set of policy versions used in the query’s authorization

(vi, pi).

Once the TM receives the replies from all of the participants,

it moves on to the validation phase. During this phase, the

TM notes any policy version inconsistencies. If all polices are



7

Algorithm 1: Two-Phase Validation (Coordinator)

1 Send “Prepare-to-Validate” to all participants

2 Wait for all replies (a True/False, and a set of policy

versions for each unique policy)

3 Identify the largest version for all unique policies

4 If all participants utilize the largest version for each

unique policy

5 If any responded False

6 ABORT

7 Otherwise

8 CONTINUE

9 Otherwise, for all participants with old versions of policies

10 Send “Update” with the largest version number of each

policy

11 Goto 2

consistent, then the protocol honors the truth value where any

FALSE causes an ABORT decision and all TRUE causes a

CONTINUE decision. In the case of inconsistent policies, the

TM identifies the latest policy and sends an Update message to

each out-of-date participant with a policy identifier and goes

back to the collection phase. In this case, the participants (1)

update to the new policy from the server, (2) re-evaluate the

proofs and (3) send a new reply to the TM. Algorithm 1 shows

the process for the TM.

In the case of view consistency (Definition 2), there will be

at most two rounds of the collection phase. A participant may

only be asked to re-evaluate a query using a newer policy by

an Update message from the TM after one collection phase.

To provide 2PV under global consistency (Definition 3),

only minor changes are needed. The global consistent version

of the protocol uses something akin to a master server to

find the latest policy version. As such, the TM will retrieve

this from some known master server in Step 2 and use it to

compare against the version numbers of each participant in

Step 3.

This master version may be retrieved only once or each time

Step 3 is invoked. For the former case, the collection phase

may only be executed twice as in the case of view consistency.

In the latter case, if the TM is retrieving the latest version

every round, global consistency may execute the collection

phase many times. This is the case if the policy is updated

during the round. While the number of rounds are theoretically

infinite, in a practical setting, we assume that this will occur

infrequently. The selection of which method depends on the

application and the properties of the privacy polices.

Besides being used at commit time, 2PV can be used during

the execution of the transaction in the case of Continuous

approach. In this case, when a query is to be executed, the TM

will (1) execute 2PV to validate authorizations of all queries

up to this point, and (2) upon CONTINUE being the result of

Coordinator Participant

Prepare

Force Write
Decision Record

Force Write
Prepared Record

Force Write
Decision Record

Write non-forced
End Record

Ack

Yes

Decision

V
o
t

i
n
g

P
h
a
s
e

n
o
i
s
i
c

D
e

e
s
a
h
P

Fig. 7. The basic two-phase commit protocol

2PV, submit the query to be executed at an appropriate server.

B. Two-Phase Validate Commit Algorithm

Although 2PV provides trusted transactions, it does not

satisfy the definition of a safe transaction as it does not validate

the satisfaction of integrity constraints. Traditionally, integrity

constraints in distributed systems are enforced by the Two-

Phase Commit atomic protocol (2PC), which is a distributed

agreement algorithm with two distinct phases: voting phase

and decision phase [8]. There is a central TM that collects

the decisions of each participant. In the voting phase, the

participants involved in the transaction are polled for their

vote on the commit. A YES vote from every participant is

interpreted by the TM as a global agreement for a commit.

On the other hand, a single NO vote from any participant

induces a global rollback. In the decision phase, the TM

notifies each participant with the voting decision and waits

for an acknowledgment. Figure 7 illustrates the sequence of

events of the basic atomic 2PC protocol.

In its basic format, 2PC cannot be used for satisfying safe

transactions by combining integrity constraint validation and

policy consistency validations because a response of YES

(even if it were to suggest both data and policy consistency)

would not indicate the version of the policy that the participant

used to determine the authorization of the commit. There

exists a situation where a participant says YES, when another

participant has a fresher policy that would have contradicted

the decision of the first participant. However, because of their

similarities, we propose to integrate 2PV and 2PC into a new

protocol called Two-Phase Validation Commit (2PVC), which

is used to ensure the data consistency and policy consistency

of distributed transactions.

Specifically, 2PVC will evaluate the policies and authoriza-

tions within the voting phase. That is, when the TM sends out a

Prepare-to-Commit message for a transaction, the participant



8

Algorithm 2: Two-Phase Validation Commit

1 Send “Prepare-to-Commit” to all participants

2 Wait for all replies (Yes/No, True/False, and a set of

policy versions for each unique policy)

3 If any participant replied No for integrity check

4 ABORT

5 Identify the largest version for all unique policies

6 If all participants utilize the largest version for each

unique policy

7 If any responded False

8 ABORT

9 Otherwise

10 COMMIT

11 Otherwise, for participants with old policies

12 Send “Update” with the largest version

number of each policy

13 Wait for all replies

14 Goto 5

server has three values to report: (1) the YES or NO reply

for the satisfaction of integrity constraints as in 2PC, (2) the

TRUE or FALSE reply for the satisfaction of the proofs of

authorizations as in 2PV, and (3) the version number of the

policies used to build the proofs (vi, pi) as in 2PV.

The process given in Algorithm 2 is for the TM under

view consistency. It is very similar to that of 2PV with the

exception of handling the YES or NO reply for integrity

constraint validation and having a decision of COMMIT rather

than CONTINUE. The TM enforces the same behavior as

2PV in that it identifies policy inconsistency, sends Update

messages to create consistency, and re-executes the first phase.

The same changes to 2PV can be made here to provide

global consistency. That is, the global 2PVC does not need

to determine the latest version number from the participant

votes. Instead, it simply asks some master server on the system

which knows the latest policy version at Step 5.

C. Discussion

With 2PV and 2PVC, the various proofs of authorization

approaches can be easily implemented. Deferred and Punctual

(Definitions 5 and 6) are roughly the same. The only difference

is that Punctual will return proof evaluations upon executing

each query. Yet, this is done on a single server, and therefore,

does not need 2PVC or 2PV to distribute the decision. To

provide for trusted transactions, both require a commit time

evaluation at all participants using 2PVC.

Incremental Punctual (Definition 8) acts just as in the basic

Punctual case. However, as queries are executed, the TM must

also check consistency within any servers that have evaluated

a proof for a data item previously in the transaction. For view

consistency, the TM merely needs to check the version number

it receives from the server that is executing the query with all

of the version numbers from previous queries. If the current

version number is newer than one previously seen, it must

abort the transaction. At the end of the transaction, all of the

proofs will have been generated with consistent policies, and

therefore do not have to be re-evaluated. That is, 2PVC does

not do policy validation and acts like 2PC.

For Incremental Punctual under global consistency, how-

ever, propagations of new policies are seen by the transaction

and the TM must communicate with previous servers. Again,

the TM simply needs to poll each server for the latest policy

versions and compare them with the known master version.

The TM will then abort if it finds a server that has a policy

newer than the master. It is still unnecessary, however, for

validations to be evaluated by 2PVC.

Finally, Continuous proofs of authorization (Definition 9)

are the most involved. Unlike the case of Incremental Punctual

in a view consistency, Continuous proofs of authorization

does not abort when it sees a newer policy version. Instead,

it invokes 2PV at the execution of each query which will

update the older policies with the new policy and re-evaluate.

If the 2PV results in a CONTINUE decision, the transaction

executes the next query. Upon ABORT, the transaction aborts.

The same actions occur under global consistency with the

exception that a global version number is used.

Recovery: In distributed environments, being able to handle

failures is critical. The resilience of 2PVC to system and

communication failures can be achieved in the same manner

as 2PC by recording the progress of the protocol in the logs of

the TM and participant (as in Figure 7). In the case of 2PVC,

a participant must forcibly log the set of (vi, pi) tuples along

with its vote and truth value.

Furthermore, the logging behavior of 2PC is agnostic to the

actions taken by the voting phase as it logs strictly before and

after. As such, any log-based optimizations of 2PC also apply

to 2PVC. This includes the common variants Presumed-Abort

(PrA) and Presumed-Commit (PrC) [5].

VI. Evaluation

A. Complexity

The cost of 2PC is typically measured in terms of log

complexity (i.e., the number of times the protocol forcibly

logs for recovery) and message complexity (i.e., the number

of messages sent). We add another metric, namely the number

of proof evaluations. These metrics are given with respect to

the number of participants involved with the decision, n, the

number of queries, u, and the number of voting rounds, r.

The log complexity of 2PVC is no different than normal

2PC, which has a log complexity of 2n + 1 [5]. This can be

improved by using a compatible optimization as discussed in

the previous section.



9

TABLE I

The complexities of the various proof schemes

Deferred Punctual Incremental Continuous

View Global View Global View Global View Global

messages 2n + 4n 2n + 2nr + r 2n + 4n 2n + 2nr + r 4n 4n + u u(u + 1) + 4n u(u + 1) + u + 2n + 2nr + r

proofs 2u − 1 ur u + 2u − 1 u + ur u u
u(u+1)

2
u(u+1)

2
+ ur

Table I shows the complexity—in terms of the maximum

number of messages and proofs—for each proof of authoriza-

tion scheme for both view and global consistency. Generally,

2PVC requires 2n+2nr messages, where there are 2n messages

for the voting phase (which may be repeated r times) and 2n

messages for the decision phase. With view consistency, the

number of voting rounds r is at most 2 (one extra round when

compared to 2PC). For the case of Deferred and Punctual

under view consistency, only the 2PVC is used. As such,

they both require 2n + 4n messages in the worst case (r is

2). For Incremental and Continuous, however, consistency is

maintained throughout the transaction which fixes r to 1. In

the case of Incremental Punctual, the 2PVC is invoked without

validations for a total of 4n messages. Continuous proofs

of authorization perform 2PV at each query, which requires

communication with potentially one extra server for each

subsequent query executed. As such, the number of messages

for 2PV is given by 2
∑u

i=1 i, which is equal to u(u + 1). By

adding the 4n messages of the 2PVC without validations, the

total becomes u(u + 1) + 4n.

In terms of proofs, the general 2PVC will evaluate u queries

each round for ur overall proof evaluations. For the case

of a view consistency, 2PVC will evaluate the first round

by validating all u queries. For the second round, at least

one query will not have to be re-evaluated as it is the one

providing the latest policy. Therefore, at most 2u−1 proofs are

required. Since Deferred uses only the 2PVC, it requires those

2u − 1 proofs. Because Punctual also evaluates proofs during

the transaction, it adds an extra u proofs totally u + 2u − 1.

Incremental Punctual, as mentioned previously, maintains the

policy consistency as the transaction executes and, as such,

does not require 2PVC with validations. In this case, it simply

evaluates the u proofs during the transaction execution. Since

Continuous proofs of authorization perform 2PV at each query,

it will require an extra proof for each subsequent query

executed. Similar to the number of messages, the number of

proofs during the transaction execution are given by
∑u

i=1 i

which is equal to
u(u+1)

2
proofs. It does not require 2PVC with

validations at commit time since running 2PV at the final query

does the equivalent work.

In the case of global consistency, r is not bounded. The De-

ferred and Punctual schemes now require the general 2n+2nr

messages plus r messages to receive the latest policy version

per round. The proofs for both must account for extra rounds

during 2PVC giving ur and u + ur proofs, respectively. Both

Incremental Punctual for global and view consistencies have

the same complexity. The global version has one difference

as it retrieves the global version number every query for an

extra u messages on top of the 4n for 2PC giving a total of

4n + u. The number of proof evaluations is the same since

2PVC with validations are not required. Finally, Continuous

uses the general 2PVC along with u messages to get the master

version number for the u invocations of 2PV and r messages to

get the master version number for 2PVC. The total messages

become u(u+1)+u+2n+2nr+ r. Since the 2PVC validations

must now be performed, an extra ur proofs are added in the

global consistency giving a total of
u(u+1)

2
+ ur.

B. Trade-Off Discussion

Clearly the various approaches towards consistency en-

forcement described in this paper offer differing guarantees

regarding the level of consistency that they provide and their

cost of enforcement. We now briefly describe the choice of

algorithm used in response to two factors: transaction length

and time between policy updates.

Transaction length < update interval. If, on the average,

the length of a transaction does not exceed the expected

interval between policy updates, it is best to rely upon either

Deferred or Punctual proofs. If the transaction duration is

relatively short, Deferred proofs are preferred, as the time

required to rollback a failed transaction will be very short

and recovery can happen on-the-fly. For longer transactions,

Punctual proofs can be used to detect inconsistencies early,

update, and then finish the transaction using the updated

policy.

Transaction length > update interval. If, on the other

hand, policy updates are expected to happen during the course

of a transaction, Incremental or Continuous proofs should be

used. During the execution of long transactions, the use of

Continuous proofs is best since this will prevent potentially

long rollbacks from occurring. By contrast, Incremental proofs

are sensible for use in relatively short transactions, as they

do not require additional policy synchronizations that would

prolong an otherwise short transaction.

VII. RelatedWork

Cloud Environment: Many database solutions have been

written for use within the cloud environment. For their own

purposes and for their cloud infrastructure, EC2, Amazon uses

their own database solution called Dynamo, which is built on



10

top of their S3 storage layer and is motivated by a desire

to provide high availability among thousands of servers [9].

Google built Bigtable, which is widely used for their own

services such as Google Earth, Google Finance, and their web

indexes [10]. Facebook implemented Cassandra, which is now

maintained by Apache, which implements a simple key-value

store model with eventual consistency [11].

The fact that these new database projects were implemented

even though mature database solutions were already available

suggests that the cloud environment requires a level of special-

ization not before seen. Apparently, the difference lies with the

focus on elasticity, also known as horizontal scalability. With

this in mind, these solutions make a trade-off between data

consistency and availability that scales as servers are added to

the system. It becomes obvious that such a consistency model

adds a new dimension to the complexity of the design of large

scale applications [12].

Distributed Transactions: Providing transactions in the cloud

is not a new revelation. It is assumed that strict transactions are

still necessary for many applications in the cloud. The work

of CloudTPS shows a solution that will provide full ACID

properties with a scalable transaction manager designed for a

NoSQL environment [13]. However, This work is primarily

concerned with providing consistency and isolation upon data

without regard to considerations of authorization policies.

There has also been work on providing some guarantees

about the relationship between data and policies [14]. This

work proactively ensures that data stored at a particular site

conforms to the policy stored at that site. If data does not

conform, it is lost. If it does conform, it is stored. If the

policy is updated, it will scan the data items and throw out

any that would be denied. It is obvious that this will lead to

an eventually consistent state where data and policy conform,

but this work only concerns itself with local consistency of a

single node, not within a transaction spanning multiple nodes.

Distributed Authorization: Distributed proofs of authoriza-

tion have been studied as well, although not in this dynamic

cloud environment. The work by Lee, et al, shows that

when policy is static, a distributed proof can be determined

that satisfies several different types of consistency [4]. These

consistency guarantees are very similar to our definitions of

safe transactions. It follows that if the policy is the same on

all nodes, that is strictly consistent, during a transaction, then

a distributed proof can be found. It is our motivation to ensure

that policies are consistent within a transaction.

VIII. Conclusions

In this paper, we identified prospective consistency prob-

lems that can arise as transactional database systems are

deployed on cloud servers and use policy-based authorization

systems to protect sensitive resources. We defined the notions

of trusted and safe transactions, and introduced different

levels of policy consistency constraints. We presented dif-

ferent proofs of authorizations approaches to achieve trusted

transactions, and showed that each approach offers different

”trust” guarantees during the course of executing transactions.

We proposed Two-Phase Validation Commit (2PVC) protocol,

an enhanced version of the widely used Two-Phase Commit

(2PC) protocol, to implement our approaches and ensure safe

transactions. Finally, we evaluated each approach in terms of

the performance and applicability.

As an extension to this work and part of our ongoing work,

we are investigating the different trade-offs of the proposed

approaches by simulating their execution over a cloud in-

frastructure. Given a better understanding of the execution

times of each approach in both short/long transactions and

frequent/infrequent policy updates, we can provide quantitative

measures to better guide the decision process.

Acknowledgments

This work was supported in part by the National Sci-

ence Foundation under awards CCF–0916015, CNS–0964295,

CNS–1017229 and IIS–1050301.

References

[1] M. Armbrust et al., “Above the clouds: A berkeley view of cloud

computing,” EECS Department, University of California, Berkeley, Tech.

Rep. UCB/EECS-2009-28, Feb. 2009.

[2] S. Das, D. Agrawal, and A. El Abbadi, “Elastras: an elastic transactional

data store in the cloud,” in USENIX HotCloud, 2009.

[3] D. J. Abadi, “Data management in the cloud: Limitations and opportu-

nities,” IEEE Data Engineering Bulletin, 32(1), Mar. 2009.

[4] A. J. Lee and M. Winslett, “Safety and consistency in policy-based

authorization systems,” in ACM CCS, 2006.

[5] P. K. Chrysanthis et al., “Recovery and performance of atomic commit

processing in distributed database systems,” in Recovery Mechanisms in

Database Systems. Prentice Hall PTR, 1998.

[6] G. Samaras, K. Britton, A. Citron, and C. Mohan, “Two-phase commit

optimizations and tradeoffs in the commercial environment,” in IEEE

ICDE, 1993.

[7] M. Myers et al., “X.509 Internet Public Key Infrastructure Online

Certificate Status Protocol - OCSP,” RFC 2560 (Proposed Standard),

IETF, 1999.

[8] W. Yu, Y. Wang, and C. Pu, “A dynamic two-phase commit protocol for

self-adapting services,” in IEEE SCC, 2004.

[9] G. DeCandia et al., “Dynamo: amazons highly available key-value

store,” in ACM SOSP, 2007.

[10] F. Chang et al., “Bigtable: A distributed storage system for structured

data,” in USENIX OSDI, 2006.

[11] A. Lakshman and P. Malik, “Cassandra- a decentralized structured

storage system,” in ACM SIGOPS, Apr. 2010.

[12] W. Vogels, “Eventually consistent,” in Commun ACM, vol. 52, Jan. 2009.

[13] Z. Wei, G. Pierre, and C.-H. Chi, “Scalable transactions for web

applications in the cloud,” in Euro-Par, Aug. 2009.

[14] T. Wobber, T. L. Rodeheffer, and D. B. Terry, “Policy-based access

control for weakly consistent replication,” in ACM EuroSys, 2010.


