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Abstract. We investigate whether four metacognitive metrics derived
from student correctness and uncertainty values are predictive of stu-
dent learning in a fully automated spoken dialogue computer tutoring
corpus. We previously showed that these metrics predicted learning in
a comparable wizarded corpus, where a human wizard performed the
speech recognition and correctness and uncertainty annotation. Our re-
sults show that three of the four metacognitive metrics remain predictive
of learning even in the presence of noise due to automatic speech recogni-
tion and automatic correctness and uncertainty annotation. We conclude
that our results can be used to inform a future enhancement of our fully
automated system to track and remediate student metacognition and
thereby further improve learning.

1 Introduction

Metacognition is an important area of intelligent tutoring systems research, both
in and of itself and with respect to its relationship to learning (e.g. [1, 2]). Within
tutorial dialogue, one metacognitive state that has received a lot of interest is
student uncertainty. In particular, researchers have hypothesized that student
uncertainty and incorrectness both signal “learning impasses”, i.e. student learn-
ing opportunities [3]. In addition, multiple correlational studies have shown a link
in tutorial dialogue between learning and student uncertainty or the related state
of confusion [4–6]. Furthermore, although most computer tutors respond based
only on student correctness, a number of controlled experiments have investi-
gated the benefits of responding to student uncertainty over and above correct-
ness during computer tutoring [7–11]. Some of these experiments have shown
that responding to student uncertainty over and above correctness results in
improved tutoring system performance, as measured by student learning, user
satisfaction, and dialogue or learning efficiency.

Drawing on the metacognition literature, we are investigating relationships
between the student states of uncertainty and correctness via complex metacog-
nitive metrics that combine measures of these two states. Other researchers have
previously used such metacognitive metrics to investigate multiple dimensions
very similar to uncertainty and correctness, and we use and build on this litera-
ture. Our metrics include learning impasse severity [12] and knowledge monitor-
ing accuracy [13], as well as bias (i.e., over/under confidence) and discrimination
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(e.g., displaying uncertainty primarily about incorrect answers) [14]. In prior
work, we investigated the relationship between these four metacognitive metrics
and learning in a wizarded spoken tutoring dialogue corpus, where speech recog-
nition and uncertainty and correctness annotation were performed in real-time
by a human “wizard” [5, 6]. We computed the complex metacognitive metrics
from the wizard’s annotations. We showed that although student uncertainty
during the tutoring dialogues does not predict student learning, average learn-
ing impasse severity, knowledge monitoring accuracy and discrimination were all
predictive of student learning.

In this paper, we investigate whether these metacognitive metrics remain
predictive of learning in a comparable corpus that was collected using the fully

automated version of our computer tutor. We computed two sets of metacognitive
metrics: one set computed from the system’s real-time automatic annotations of
uncertainty and correctness, and one set computed from manual annotations
of uncertainty and correctness performed after the experiment was over. Our
results show that almost all of the same metacognitive metrics that predict
learning during the wizarded computer tutoring also predict learning during the
fully automated computer tutoring, using either the automatically-computed or
manually-computed metacognitive metrics. We conclude that these metacogni-
tive metrics are a useful construct for understanding student learning during
spoken dialogue computer tutoring, even in the presence of noise introduced by
fully automated student uncertainty detection and speech and natural language
processing. Our results will be used to track and remediate metacognition in
future system versions and thereby further improve student learning.

2 Spoken Dialogue Computer Tutoring Data

This research uses the ITSPOKE-AUTO corpus, which is a collection of di-
alogues between college students and our spoken dialogue computer tutor, IT-
SPOKE (Intelligent Tutoring SPOKEn dialogue system). ITSPOKE is a speech-
enhanced version of the Why2-Atlas qualitative physics tutor [15].

The ITSPOKE-AUTO corpus is the second of two corpora collected over
two prior controlled experiments evaluating the utility of enhancing ITSPOKE
to respond to learning impasses involving student uncertainty, over and above
correctness [8]. Motivated by research that views uncertainty as well as incorrect-
ness as signals of “learning impasses” [3] (i.e., opportunities to learn), ITSPOKE
was modified for use in these two experiments so that it associated one of four
impasse states with every student answer, and could adapt contingently based
on each answer’s impasse state (in the experimental conditions), or based only
on its correctness (in the control conditions). The four impasse states correspond
to all possible combinations of (binary) uncertainty (uncertain (UNC), certain
(CER)1) and correctness (incorrect (INCOR), correct (COR)), as shown in
Figure 1. The incorrectness component of each state reflects the actual accuracy

1 A ‘certain’ answer may actually be certain or neutral for certainty.
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of the student’s answer, while the uncertainty component reflects the tutor’s per-
ception of the student’s awareness of this accuracy. The scalar ranking of impasse
states in terms of severity combines these two components and will be discussed
below. Further details of the adaptive system are discussed elsewhere [7].

Nominal State: INCOR CER INCOR UNC COR UNC COR CER
Severity Rank: most (3) less (2) least (1) none (0)

Fig. 1. Different Impasse State Severities

For the two experiments, the experimental procedure was as follows: students
(1) read a short physics text, (2) took a multiple-choice pretest, (3) worked
through five problems (1 per dialogue) with a version of the system, (4) took a
survey, and (5) took an isomorphic posttest.

The first corpus, called the ITSPOKE-WOZ corpus [8], contains 405 dia-
logues from 81 students, and was collected from the first experiment using a
semi-automatic version of ITSPOKE in which speech recognition and correct-
ness and uncertainty annotation were performed by a human “wizard”, to test
the upper-bound performance of adapting to uncertainty (i.e. without the noise
introduced by speech and language processing). The wizard listened to the di-
alogues (without students’ knowledge) and labeled each answer with an uncer-
tainty (UNC, CER) and a correctness label (INCOR, COR).2 Average pretest
and posttest scores were 0.51 and 0.75, respectively.

The second corpus, called the ITSPOKE-AUTO corpus, contains 360 dia-
logues from 72 students, and was collected from the second experiment using a
fully automated version of ITSPOKE in which all tasks were fully automated.
In particular, student speech was digitized from microphone input and sent to
the Sphinx2 speech recognizer whose stochastic language models were trained
on the ITSPOKE-WOZ corpus and prior ITSPOKE corpora. Correctness was
automatically labeled on the speech recognition output using the TuTalk seman-
tic analyzer [16], which was trained on the ITSPOKE-WOZ corpus. Uncertainty
was automatically labeled on the speech recognition output using an uncertainty
model built with WEKA software from features of the student speech and di-
alogue context, including lexical, pitch, temporal, and energy features as well
as tutor question and gender. The uncertainty model is a logistic regression
equation that was trained on the ITSPOKE-WOZ corpus.

The ITSPOKE-AUTO corpus was manually transcribed after the second
experiment, and the wizard from the first experiment manually labeled each
student turn in the ITSPOKE-AUTO corpus for uncertainty and correctness.
The system’s correctness and uncertainty labels were then compared with the
wizard’s labels: for correctness, this comparison yielded a system accuracy of

2 In prior ITSPOKE corpora, this wizard displayed interannotator agreement of 0.85
and 0.62 Kappa on correctness and uncertainty, respectively [5].
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84.7%, and for uncertainty, this comparison yielded a system accuracy of 80.3%
Speech recognition accuracy measured as 100% - Word Error Rate (WER) was
74.6%. WER is a standard measure for evaluating the performance of automatic
speech recognition software. We compute WER using the NIST sclite program,
which uses minimum edit distance to come up with a WER score by assigning
penalties for word insertions, deletions, and substitutions. Average pretest and
posttest scores in the ITSPOKE-AUTO corpus were 0.51 and 0.73, respectively.3

Figure 2 shows an annotated example of the ITSPOKE-AUTO corpus dia-
logues. STUDENT-AUTO shows the automatically recognized speech and au-
tomatic uncertainty and correctness labels for each student turn, while STUDENT-

MANU shows the corresponding manual transcript and annotations.

ITSPOKE-AUTO1: Let’s begin by looking at the motion of the man and his keys
while he’s holding them. How does his velocity compare to that of his keys?

STUDENT-AUTO1: his also the is the same as that of his keys points force (IN-
COR CER)

STUDENT-MANU1: his velocity is the same as that of his keys while he’s holding them
(COR UNC)

ITSPOKE-AUTO2: Actually... Their velocities must be the same, because the man’s
holding his keys, so they’re not moving with respect to each other. [...] What are the
forces exerted on the man after he releases his keys?

STUDENT-AUTO2: the only force is (INCOR UNC)

STUDENT-MANU2: the only force is (INCOR UNC)

ITSPOKE-AUTO3: Well... Gravity is the only force acting on the man. [...] So what’s
the direction of the force of gravity on the man (e.g., vertically up)?

STUDENT-AUTO3: vertically down (COR CER)

STUDENT-MANU3: vertically down (COR CER)

Fig. 2. Annotated ITSPOKE-AUTO Corpus Excerpt

3 Metacognitive Performance Metrics

In this section we introduce several ways of combining uncertainty and correct-
ness annotations into complex quantitative metacognitive performance metrics.
All metrics were computed on a per student basis (over all five dialogues of
each student). In addition, all metrics were computed twice: once based on the
automatic correctness and uncertainty annotations (-auto), and once based on
the corresponding manual annotations (-manu). Finally, note that our metrics
represent inferred (or tutor-perceived) values rather than actual values, because
our uncertainty labeling is done by the system or a human judge; we discuss this
issue further in Section 5.
3 Independent repeated measures ANOVA analyses of both corpora showed significant

main effects for repeated test measure, indicating that students learned a significant
amount during both experiments.
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Our first metric is based on a ranking of learning impasses by severity. In
particular, we first associated a scalar impasse severity value with each student
answer in the ITSPOKE-AUTO corpus, and then computed an average impasse
severity. Our impasse severity values were proposed in our earlier work [12] and
are shown in Figure 1. According to our ranking, the most severe type of impasse
(3) occurs when a student is incorrect but not aware of it. States 2 and 1 are of
increasingly lesser severity: the student is incorrect but aware that s/he might
be, and the student is correct but uncertain about it, respectively. Finally, no
impasse exists when a student is correct and not uncertain about it (0). These
severity rankings reflect our assumption that to resolve an impasse, a student
must first perceive that it exists. Incorrectness simply indicates that the student
has reached an impasse, while uncertainty - in a correct or incorrect answer -
indicates that the student perceives s/he has reached an impasse.

The rest of our metacognitive metrics are taken from the metacognitive per-
formance literature. The knowledge monitoring accuracy metric that we use is
the Hamann coefficient (HC) [13]. This metric has previously been used to
measure the accuracy of one’s own knowledge monitoring, called “Feeling of
Knowing”(FOK) [17]. A closely related notion in the metacognition literature is
“Feeling of Another’s Knowing” (FOAK), which refers to monitoring the FOK of
someone else [18], and is very similar to our student uncertainty labeling as per-
formed by the system or a human judge. High and low FOK/FOAK judgments
have also been associated with speaker certainty and uncertainty, respectively,
in prior research [19].

HC measures absolute knowledge monitoring accuracy4, or the accuracy with
which certainty reflects correctness. HC ranges in value from -1 (no knowledge
monitoring accuracy) to 1 (perfect accuracy). As shown below, the numerator
subtracts cases where (un)certainty is at odds with (in)correctness from cases
where they correspond, while the denominator sums over all cases.

HC = (COR CER+INCOR UNC)−(INCOR CER+COR UNC)
(COR CER+INCOR UNC)+(INCOR CER+COR UNC)

Following [20], who investigate the role of immediate feedback and other
metacognitive scaffolds in a medical tutoring system, we additionally measure
metacognitive performance in terms of bias and discrimination [14]. Bias mea-
sures the overall degree to which confidence matches correctness. Bias scores
greater than and less than zero indicate overconfidence and underconfidence,
respectively, with zero indicating best metacognitive performance. As shown be-
low, the first term represents the relative proportion of confident answers (certain
cases/all cases); the second represents the relative proportion of correct answers.

bias = COR CER+INCOR CER

COR CER+INCOR CER+COR UNC+INCOR UNC
−

COR CER+COR UNC

COR CER+INCOR CER+COR UNC+INCOR UNC

4 While Gamma (which measures relative monitoring accuracy) is also often used,
there is a lack of consensus regarding the benefits of Gamma versus HC [13], and we
found HC more predictive of learning in our ITSPOKE-WOZ corpus [6].
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Discrimination measures the ability to discriminate performance in terms of
(in)correctness. Discrimination scores greater than zero indicate higher metacog-
nitive performance. As shown below, the first term represents the proportion of
correct answers judged as certain, and the second term represents the proportion
of incorrect answers judged as certain.

discrimination = COR CER

COR CER+COR UNC
−

INCOR CER

INCOR CER+INCOR UNC

To illustrate the computation of our four metacognitive performance met-
rics, suppose the annotated dialogue excerpt in Figure 2 represented our entire
dataset (from a single student). Then we would have the following values for our
automatically-derived ( auto) metrics for that student:

AV ImpasseSeverity auto = 3+2+0
3 = 5

3

HC auto = (1+1)−(1+0)
(1+1)+(1+0) = 1

3

bias auto = 1+1
1+1+0+1 −

1+0
1+1+0+1 = 2

3 −
1
3 = 1

3

discrimination auto = 1
1+0 −

1
1+1 = 1

1 −
1
2 = 1

2

Measure Mean SD R p

AV Impasse Severity .63 .24 -.56 .00
HC .59 .16 .42 .00
Bias -.02 .12 -.21 .06
Discrimination .42 .19 .32 .00

%C .79 .09 .52 .00
%U .23 .11 -.13 .24

Table 1. Prior Correlation Results from ITSPOKE-WOZ Corpus

In prior work [5, 6], we showed that these four metacognitive metrics were
predictive of learning in our ITSPOKE-WOZ corpus, where speech recognition,
and uncertainty and correctness annotation were performed by a wizard. We
computed the partial Pearson’s correlation between each metacognitive metric
and posttest, after first controlling for pretest to account for learning gain. We
also computed the correlation for the percentage of student turns manually an-
notated as correct (%C) and as uncertain (%U). Correctness and uncertainty
are useful baselines since they were used to derive the four complex metrics and
have previously been shown to predict learning by ourselves and others (e.g [21]).
Table 1 summarizes the results of this prior work, showing the mean and stan-
dard deviation of each metric, along with its Pearson’s Correlation Coefficient
(R), and the significance of the correlation (p).

4 Results

Here we investigate whether our four metacognitive metrics are predictive of
learning in our “noisy” ITSPOKE-AUTO corpus, where speech recognition, un-
certainty and correctness annotation were fully automated.
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Comparison of Table 2 and Table 1 shows that with the exception of discrim-
ination, the two metacognitive metrics (impasse severity and knowledge moni-
toring accuracy) that are significantly correlated with learning in the ITSPOKE-
WOZ corpus remain correlated with learning in the ITSPOKE-AUTO corpus,
both when derived from the automatic ( auto) and the manual annotations
( manu). In the case of average impasse severity, both the automatically-derived
and manually-derived metrics yield a negative correlation, but the manually-
derived metric (R = -0.50) is closest to the result in the ITSPOKE-WOZ cor-
pus (R = -0.56). In the case of knowledge monitoring accuracy (HC), both
the automatically-derived and manually-derived metrics yield a positive corre-
lation, but the automatically-derived metric (R = 0.35) is closest to the result
in the ITSPOKE-WOZ corpus (R = 0.42). Bias is negatively correlated with
learning as a trend in the ITSPOKE-WOZ corpus; in the ITSPOKE-AUTO cor-
pus the manually-derived bias metric is nearly but not quite a trend while the
automatically-derived bias metric is significant. These results suggest that less
severe impasse states (i.e., impasses that include uncertainty), greater knowledge
monitoring accuracy, and underconfidence about one’s correctness, are all better
for the student from a learning perspective during computer tutoring, even when
the measurement of these metrics must take into account noise due to automatic
uncertainty detection and natural language processing.

Metric Mean SD R p

AV Impasse Severity auto .96 .26 -.40 .00
AV Impasse Severity manu .82 .23 -.50 .00

HC auto .42 .14 .35 .00
HC manu .49 .13 .29 .02

Bias auto .21 .07 -.36 .00
Bias manu .06 .13 -.19 .11

Discrimination auto .19 .10 -.04 .77
Discrimination manu .30 .14 -.03 .81

%C auto .66 .10 .39 .00
%C manu .72 .09 .52 .00

%U auto .13 .07 -.15 .20
%U manu .22 .14 -.13 .28

Table 2. Correlation Results from ITSPOKE-AUTO Corpus

Interestingly, the simple uncertainty metric (%U) in and of itself does not
show predictive utility in this data; it is not correlated with learning in the
ITSPOKE-AUTO corpus, nor did it correlate with learning in the ITSPOKE-
WOZ corpus. However, correctness %C does significantly correlate with learning
in both corpora; the manually-derived metric is closer to the ITSPOKE-WOZ
corpus (R = 0.52) than the automatically-derived metric (R = 0.39).

Although these results suggest remediating metacognition can have a positive
impact on learning in both wizarded and fully automated spoken dialogue tutor-
ing, they also raise the question of whether this will be effective over remediating
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correctness. We addressed this question via three further analyses. First we com-
puted bivariate Pearson’s correlations between correctness and each metacogni-
tive metric. Correctness was significantly correlated with all metacognitive met-
rics in both the ITSPOKE-WOZ and ITSPOKE-AUTO corpora (both manually
and automatically-derived). This suggests that remediating megacognition will
not add value over remediating correctness. However, we then computed partial
Pearson’s correlations between each metacognitive metric and posttest after con-
trolling for pretest and correctness. In the ITSPOKE-WOZ corpus, all metrics
except bias remained significantly correlated with posttest, but in the ITSPOKE-
AUTO corpus, no metric remained correlated with posttest. Finally, we com-
puted stepwise linear regressions that allowed the model to select from pretest,
correctness and the metacognitive metrics. In the ITSPOKE-WOZ corpus HC
was selected for inclusion in the regression model after %C and pretest [6]; this
indicates that knowledge monitoring accuracy adds value over and above correct-
ness for predicting learning. In the ITSPOKE-AUTO corpus, AV Impasse Sever-
ity auto was selected besides pretest when using automatically-derived metrics,
but %C manu was selected besides pretest when using manually-derived met-
rics. These last two analyses suggest that remediating metacognition can add
value over remediating correctness in the “ideal” and the “realistic” conditions
of wizarded and fully automated spoken dialogue tutoring, respectively.

5 Conclusions and Future Directions

This paper investigates whether four metacognitive metrics remain predictive of
student learning in a previously collected fully automated spoken dialogue com-
puter tutoring corpus; we previously showed that these metacognitive metrics
predict learning in a comparable wizarded corpus. Our purpose in this study was
to determine whether our prior results could be replicated even in the presence
of noise due to automatic speech recognition and automatic correctness and un-
certainty annotation. Our larger goal is to use our results to track and remediate
metacognition and thereby further improve student learning

Of our four metacognitive metrics, one was introduced in our prior work
(impasse severity); the other three come from the metacognitive performance
literature (knowledge monitoring accuracy, bias and discrimination). We com-
puted one set of metacognitive metrics from the system’s real-time automatic
annotations of uncertainty and correctness, and another set from subsequent
manual annotations. Our results show that average impasse severity, knowl-
edge monitoring accuracy and bias remain predictive of learning in the fully
automated corpus - both when computed from the automatic values and when
computed form the manual values. We conclude that these metacognitive metrics
are a useful construct for understanding student learning during spoken dialogue
computer tutoring, even when their measurement includes noise introduced by
fully automated uncertainty detection and natural language processing. Further-
more our analyses suggest that remediating metacognitve metrics can add value
over and above remediating correctness; this result is strongest in the “ideal”
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conditions of wizarded tutoring, but our regression results suggest that it also
holds in the “realistic” conditions of fully automated spoken dialogue tutoring.

In future work we plan to use our results to inform a modification of our
system aimed at improving student metacognitive abilities and also thereby
improving student learning. In particular, our results indicate that it feasible
to develop enhancements for our fully automated system that target student
metacognition based on the noisy version of our metacognitive metrics; if our
results had not held for our automatically-derived metrics then we would have
to explore system enhancements that target student metacognition using the
much more time-consuming and expensive wizarded system. Note however that
because uncertainty in our system is labeled by the tutor (either the system or a
human wizard), our metacognitive metrics represent inferred or tutor-perceived
values rather than actual values. It is well known in the affective tutoring litera-
ture that obtaining “actual” values for student/user affective states and attitudes
is difficult; for example, student self-judgments and peer judgments have both
been shown to be problematic (e.g. [22]). Nevertheless, to help measure improve-
ments in student metacognitive abilities due to our future system modifications,
we will also incorporate “Feeling of Knowing” (FOK) ratings into our testing,
whereby students will provide input on their uncertainty levels. More generally,
there is increasing interest in using intelligent tutoring systems to teach metacog-
nition, and we plan to build on this literature (e.g. [1, 2, 20]) with future system
enhancements that target student metacognitive abilities.
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