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Abstract

We describe the design and evaluation of two different dynamic student uncertainty adaptations in wizarded versions of
a spoken dialogue tutoring system. The two adaptive systems adapt to each student turn based on its uncertainty, after an
unseen human “wizard” performs speech recognition and natural language understanding and annotates the turn for
uncertainty. The design of our two uncertainty adaptations is based on a hypothesis in the literature that uncertainty is
an “opportunity to learn”; both adaptations use additional substantive content to respond to uncertain turns, but the
two adaptations vary in the complexity of these responses. The evaluation of our two uncertainty adaptations represents
one of the first controlled experiments to investigate whether substantive dynamic responses to student affect can signifi-
cantly improve performance in computer tutors. To our knowledge we are the first study to show that dynamically
responding to uncertainty can significantly improve learning during computer tutoring. We also highlight our ongoing
evaluation of our uncertainty-adaptive systems with respect to other important performance metrics, and we discuss
how our corpus can be used by the wider computer speech and language community as a linguistic resource supporting
further research on effective affect-adaptive spoken dialogue systems in general.
� 2009 Elsevier Ltd. All rights reserved.
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1. Introduction

As research on developing more natural and effective human–computer interaction progresses into more
complex domains, there has been increasing interest in incorporating information about affective states into
the interaction model. For example, within spoken dialogue systems research, a wide range of linguistic infor-
mation, including pitch, energy, and timing information, has been successfully extracted from the user’s speech
signal and larger dialogue context and used to automatically detect user affective states (Batliner et al., 2008;
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D’Mello et al., 2008; Litman and Forbes-Riley, 2006a; Vidrascu and Devillers, 2005; Lee and Narayanan,
2005; Shafran et al., 2003). Similarly, within the domain of tutoring systems, sophisticated models of learner
affective states have been developed that take not only learner-based cues (e.g., linguistic, visual, and physio-
logical), but also the learning environment into account (D’Mello et al., 2008; Porayska-Pomsta et al., 2008;
Conati and Maclaren, 2004; Gratch and Marsella, 2003; de Vicente and Pain, 2002). The larger goal of such
automatic affect detection is to enable automatic affect adaptation; these spoken dialogue and tutoring system
researchers hypothesize that responding to user affect will significantly improve system performance. How-
ever, to date most deployed spoken dialogue systems and computer tutors ignore user affective states when
determining how to respond. Moreover, it is still largely an open question as to what are the most effective
methods of adapting to user affective states. To some extent the answer to this question depends on the task
domain, the system performance metric being targeted for improvement, and the affective state(s) being tar-
geted for adaptation.

Within the tutoring spoken dialogue system domain, student learning is the primary system performance
metric, and student uncertainty is an affective state of primary interest. Although uncertainty is not one of
the “big 6” basic emotions such as anger and happiness (Ekman and Friesen, 1978), tutoring dialogue
research suggests uncertainty plays an important role in the learning process; in particular, it has been
related to correctness and learning (Craig et al., 2004; Bhatt et al., 2004). Due to the complexity of the infor-
mation exchange in a tutoring dialogue, dynamic affect-adaptive tutoring systems-that is, systems that recog-
nize and respond to user affect on a turn by turn basis-are often modeled on human tutors’ responses. In
addition, most affect-adaptive computer tutors have been evaluated within a “Wizard of Oz” scenario, where
a human “wizard” performs system tasks such as speech recognition, natural language understanding, and
affect detection. Wizarding the system in this way removes noise that might have potentially distracted from
the dialogue interaction due to misrecognition of the user’s utterance and/or affective state; thus the system
design is tested under the best possible conditions. For example, in Tsukahara and Ward (2001), positive
feedback responses to various affective states in student answers, including praising acknowledgments after
uncertain answers, were developed based on a frequency analysis of human tutor responses. These responses
were implemented in a Memory Game computer tutor, in which a human wizard performed speech recog-
nition and natural language understanding (affect detection was automatic). Students rated the usability of
the resulting affect-adaptive system more highly than a non-adaptive version, but no significant differences in
student learning were reported. Similarly, in Aist et al. (2002), a human wizard performed speech recognition
and natural language understanding in a spoken Reading Tutor, and then provided “emotional scaffolding”

(e.g., “Good try”) after detecting various affective states in student answers, including uncertainty. The emo-
tional scaffolding resulted in increased student persistence, but did not yield improved learning. As these
examples illustrate, dynamically adapting to student affect with positive feedback and/or empathy has
yielded improvements for performance metrics such as user satisfaction, but has not yet yielded significant
learning improvements. Other dialogue system domains have also shown performance improvements by
dynamically adapting to user affect with positive feedback and/or empathy (Liu and Picard, 2005; Klein
et al., 2002; Prendinger and Ishizuka, 2001). For example, Liu and Picard (2005)’s health assessment system
responds with empathy to instances of user stress. Similarly, Klein et al. (2002)’s gaming system responds
with sympathy and apology to instances of user frustration. In both of these studies, user satisfaction is con-
sidered a primary metric of system performance, and both studies successfully showed that users preferred to
use the adaptive system over non-adaptive versions.

There have also been a number of non-dynamic (static) approaches to affect adaptation in tutoring systems.
These systems employ “empathetic agents”, whose responses take student affect into account but do not detect
and respond to the specific affective state of each student turn (Wang et al., 2008, 2005; Hall et al., 2004); in
some cases significant learning improvements have been achieved. In particular, Wang et al. (2008, 2005)
implement a model of “socially intelligent tutoring” based on politeness theory in an online learning system.
They conduct a series of Wizard of Oz studies in which students either used the socially intelligent system and
received polite tutorial feedback after every turn, or used the control system and received direct feedback after
every turn. The socially intelligent system was found to yield increased student learning as compared to the
control system. Related to this work is recent research on natural language generation in dialogue systems that
addresses automatic generation of different system personality styles, such as in Mairesse and Walker (2008).
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Taken together, this prior research suggests that while computer tutors should be made more polite and
empathetic overall to increase their learning effectiveness, dynamically responding to student uncertainty
with positive feedback and empathy is not sufficient in isolation to increase student learning. Tutoring the-
ories addressing the relationship between uncertainty and learning (see Section 3) suggest that more sub-
stantive dynamic system responses to uncertainty over and above correctness might be more effective at
increasing learning. To our knowledge, only one other study has evaluated substantive dynamic computer
tutor adaptations to affective student turns. In particular, Pon-Barry et al. (2006) use a frequency analysis
to extract two human tutor responses to uncertain answers (correct and incorrect, respectively) from a
human-tutoring corpus. These responses (“paraphrasing” after correct + uncertain answers and “referring
back to past dialogue” after incorrect + uncertain answers) were then implemented and evaluated in the
fully-automated SCoT-DC spoken dialogue tutor. When used after all correct and incorrect answers,
the adaptations were found to significantly increase learning as compared to not using them at all. How-
ever, when used only after correct + uncertain and incorrect + uncertain answers, the adaptations did not
significantly increase learning as compared to not using them at all. This result suggests that the adapta-
tions did not actually target uncertainty; rather, they improved the overall tutoring strategy for responding
to (in)correctness. This might be due to the fact that the adaptations were not based on statistically sig-
nificant differences in how a human tutor responds to uncertain versus non-uncertain answers. In addition,
because the tutoring system was fully automated rather than wizarded, speech recognition and understand-
ing errors may have negatively impacted the effectiveness of the adaptations. Moreover, the system used
only a limited set of features to recognize uncertainty, which may also have decreased the effectiveness of
the adaptations.

Although there are to date so few controlled evaluations of substantive dynamic adaptations to user affect
in the spoken dialogue tutor domain, similar evaluations performed in other spoken dialogue system domains
have shown that substantive dynamic adaptations can significantly improve system performance; however, the
adaptations being evaluated were based on recognition of communication problems rather than recognition of
user affect. For example, in Litman and Pan (2002), dialogue strategies were automatically adapted dynami-
cally based on repeated speech recognition errors. The adaptive system outperformed the non-adaptive system
for novice users by significantly increasing the task completion rate. In Chu-Carroll and Nickerson (2000),
initiative strategies were automatically adapted dynamically based on participant roles, features of the current
utterance such as ambiguity, and dialogue history. The adaptive system outperformed the non-adaptive sys-
tem in terms of system usability, dialogue efficiency, and dialogue quality measures. Reinforcement learning is
another technique that has produced substantive dynamic adaptations based on user states in spoken dialogue
systems (see Section 8).

In this paper we discuss the design of two different substantive dynamic adaptations to student uncertainty
in our spoken dialogue computer tutor, and the evaluation of these adaptations via controlled experiment
using a Wizard of Oz scenario, where the wizard performed speech recognition, natural language understand-
ing, and uncertainty recognition. Both uncertainty adaptations were derived from tutoring theory that views
both uncertainty and incorrectness as a “learning opportunity”: the Simple adaptation provided additional
tutoring content after every uncertain or incorrect student answer, to take advantage of all learning opportu-
nities. The Complex adaptation provided the same additional tutoring content after all learning opportunities,
but varied the presentation of this content based on a statistical analysis of human tutor dialogue act responses
to uncertainty and incorrectness, and it also provided empathetic feedback after every uncertain or incorrect
answer. In contrast, the original non-adaptive system ignored uncertainty-it only provided additional tutoring
content after incorrect answers, and it only provided feedback acknowledging the answer’s (in)correctness.

Our results show that our Simple adaptation significantly improved student learning as compared to a non-
adaptive version of our wizarded computer tutor. To our knowledge we are the first study to show that
dynamically responding to student uncertainty can significantly improve learning during computer tutoring.
We also highlight our ongoing evaluation of our uncertainty-adaptive systems with respect to other important
performance metrics that are important for spoken dialogue systems in general, including user satisfaction and
dialogue-based metrics. Finally, we discuss how the corpus resulting from our experiment can be used by the
wider computer speech and language community as a linguistic resource to support further research on devel-
oping effective affect-adaptive spoken dialogue systems in all domains.
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This article is organized as follows: Section 2 describes our original non-adaptive spoken dialogue tutoring
system and the Wizard of Oz version of our system. Section 3 discusses why student uncertainty is an impor-
tant affective state to adapt to in such systems. Section 4 discusses how our two uncertainty adaptations are
derived from tutoring theory, and explains how these adaptations are implemented in our system. Section 5
describes the controlled experiment and corpus collection using wizarded adaptive and non-adaptive versions
of our system. Section 6 discusses our evaluation of the impact of the uncertainty adaptations on student
learning. Section 7 details the resulting corpus, including speech files, transcriptions, annotations, and descrip-
tive statistics, and also discusses other uses of the corpus, including our evaluations of the adaptive systems
with respect to other performance metrics, and the use of our corpus by the wider community as a data mining
resource for improving automatic affect detection and adaptation in spoken dialogue systems. Section 8 dis-
cusses our future work, including a future evaluation of a fully automated version of the system used in this
experiment.

2. ITSPOKE: original and wizarded system versions

Our original (non-adaptive) tutoring system is called ITSPOKE (Intelligent Tutoring SPOKEn dialogue
system) (Litman and Forbes-Riley, 2006a). ITSPOKE is a fully automated spoken dialogue tutoring system
that is built on top of the Why2-Atlas text-based tutoring system (VanLehn et al., 2002).

ITSPOKE tutors students in five qualitative physics problems. One physics problem is shown in Fig. 1.
Each physics problem is tutored via a spoken dialogue interaction between student and ITSPOKE. Each dia-
logue consists of a series of questions about the topics needed to solve the physics problem. The dialogues have
a Question–Answer–Response format, which is implemented with a finite state dialogue manager. In our ori-
Fig. 2. Example of a BottomOut response to an incorrect answer in the original (non-adaptive) ITSPOKE.

Fig. 3. Example of a Subdialogue response to an incorrect answer in the original (non-adaptive) ITSPOKE.

Fig. 1. Example ITSPOKE physics problem.
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ginal (non-adaptive) ITSPOKE, system responses (states) depend only on the correctness of the student
answers (transitions between states).

If the student answers a question correctly, ITSPOKE responds with correctness feedback and then moves
on to the next question. Correctness feedback is selected from the following phrases to indicate that the answer
was correct: Fine; That’s correct; Excellent; That’s right; Good; Right; Correct.

If the student answers a question incorrectly, ITSPOKE responds with a remediation. This response begins
with correctness feedback selected from the following phrases to indicate that the answer was incorrect: That

doesn’t sound right; I don’t think so; Well. . .; That’s not what I expected. The rest of the response takes one of
two forms:

� For incorrect answers to questions about easier topics, ITSPOKE gives a BottomOut, i.e., provides the cor-
rect answer with a brief statement of reasoning. This is illustrated in Fig. 2.
� For incorrect answers to questions about harder topics, ITSPOKE engages the student in a Subdialogue,

i.e., one or more additional questions that walk the student through the more complex line of reasoning
required to achieve the correct answer. This is illustrated in Fig. 3 (only the first question in the subdialogue
is shown).
2.1. ITSPOKE-WOZ: Wizard of Oz version of ITSPOKE

For this study, we used a Wizard of Oz version of ITSPOKE (ITSPOKE-WOZ). In ITSPOKE-WOZ, a few
system components were replaced by a human “wizard”: The wizard performed speech recognition, natural
language understanding, and uncertainty annotation, for each student answer. In this way, we tested the upper
bound performance of our uncertainty adaptations without any potentially negative impact of automated ver-
sions of these tasks.

Fig. 4 shows a screenshot of the wizard’s interface used during the experiment. The top Problem Statement
box shows the physics problem. The middle Dialogue History box shows a history of the text of the tutor
turns. The student turns are not shown in this box because they are not transcribed until after the experiment.

Note that students use almost the same interface as the wizard, except that students only see the Problem
Statement and Dialogue History boxes. Although students listen to the tutor speech through headphones (see
Section 5), the Dialogue History gives them the option of reading along.

The lowest section of the interface is seen only by the wizard; it is used to annotate the student turns for
correctness and uncertainty. Upon hearing each student answer, the wizard annotates whether or not it is
uncertain in the Uncertain checkbox in the lower right. All annotated values are logged and sent to the dia-
logue manager to determine the system’s response when the wizard clicks the “OK” box.

In the lower left selection area, the wizard annotates whether the heard answer is correct or incorrect, and
to which category of answer it belongs: correct, unanticipated, and don’t know (labeled =c, =u, and =d,
respectively). For example, in Fig. 4, “same” is the correct answer category for the tutor question recorded
in the Dialogue History pane. A variety of actual heard student answers would fall into this category, includ-
ing “they are the same”, “they are equal”, “there’s no difference between them”, etc. The “unanticipated” cat-
egory is used for incorrect answers. For example, in Fig. 4, a wide variety of student answers, including “they
are different”, “they are zero”, and “the keys are falling faster than the man” would all fall into this category.
The “don’t know” category is used for answers such as “I have no idea”, “um. . .”, “I give up”. Note that
“don’t know” answers are treated as incorrect in terms of system response content in the original ITSPOKE
system; however, they receive special treatment in the Complex uncertainty adaptation (see Section 4.2).

3. Targeting student uncertainty

Our investigation into the development of dynamic substantive student affect adaptations initially targets a
single student affective state: uncertainty. Although uncertainty does not fall within the “big 6” set of basic
emotions described in Ekman and Friesen (1978) (fear, happiness, sadness, disgust, anger, surprise), tutoring
researchers have argued that this set needs to be supplemented or even replaced to describe the range of emo-
tions relevant to the learning process (D’Mello et al., 2008). In line with this literature, we use the term “affect”
Please cite this article in press as: Forbes-Riley, K., Litman, D., Designing and evaluating a wizarded uncertainty-adaptive spoken dia-
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in this paper to cover both emotions and attitudes that may impact student learning and can affect how stu-
dents communicate their answers during tutoring. Other tutoring researchers have also taken this complex
view when annotating various non-traditional affective states in tutoring dialogues, including uncertainty or
confusion (D’Mello et al., 2008; Pon-Barry et al., 2006; Bhatt et al., 2004) and confidence, self-efficacy, or flow
(McQuiggan et al., 2008; D’Mello et al., 2008). Similarly, some speech researchers have found that the narrow
sense of “emotion” is too restrictive because it excludes states in speech where affective state is present but not
full-blown, including arousal and attitude (see Cowie and Cornelius, 2003).

We target uncertainty for two reasons. First, uncertainty occurred significantly more frequently than
other student affective states in our previously collected ITSPOKE corpora (Litman and Forbes-Riley,
2004). Second, uncertainty is an affective state of primary interest in the tutoring dialogue domain because
research suggests it plays an important role in the learning process. In particular, tutoring researchers
hypothesize that uncertainty can signal to the tutor that there is an opportunity for constructive learning
to occur, and that experiencing uncertainty can motivate a student to engage in learning (e.g., VanLehn
et al., 2003; Kort et al., 2001). However, studies have also shown that uncertainty and incorrectness cannot
be equated (Bhatt et al., 2004). In addition, studies have shown correlations between learning and confu-
sion, with confusion being defined as an indicator of uncertainty. For example, Craig et al. (2004) use Rozin
and Cohen (2003)’s definition of student confusion as indicating an uncertainty about what to do next or
how to act, or a need for clarification or more information. Craig et al. (2004) argue that confusion there-
fore accompanies “cognitive disequilibrium” (Graesser and Olde, 2003), in which learners confront obstacles
to goals, salient contrasts, equivalent alternatives, or other experiences that fail to match their expectations.
The cognitive disequilibrium, and the confusion that accompanies it, has a high likelihood of causing delib-
eration and inquiry aimed at restoring cognitive equilibrium. Craig et al. (2004) report that the proportion
of student confusion turns positively correlated with learning in the AutoTutor system (Graesser et al.,
2005).
Please cite this article in press as: Forbes-Riley, K., Litman, D., Designing and evaluating a wizarded uncertainty-adaptive spoken dia-
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Tutoring dialogue research has also shown that student uncertainty can be annotated with a reasonable
degree of interannotator reliability. For example, Bhatt et al. (2004) annotated student turns containing lexical
expressions of “hedging” (e.g., “I guess”, “um”) with an inter-annotator reliability of 0.97 Kappa.1 In our
prior ITSPOKE corpora, two annotators labeled 4533 student turns for binary uncertainty (uncertain versus
certain), yielding an inter-annotator reliability of 92% (0.73 Kappa).2

Our annotation scheme for labeling student uncertainty distinguishes two labels. The Uncertain label is used
for answers expressing uncertainty or confusion about the material being tutored (e.g., as opposed to students’
uncertainty directed towards themselves or towards being tutored by a computer). The Certain label is used
for all other answers (which actually may be either certain or neutral for certainty).

Our uncertainty annotation is based wholly on the annotator’s subjective judgment. S/he can base this deci-
sion on evidence from many knowledge sources, including lexical items (e.g., “I don’t know”), disfluencies
(e.g.,“um”, “gra-gravity”), sentence fragments (e.g., “gravity is. . .”), and acoustic-prosodic features (e.g., into-
nation, tempo, energy) in the student speech, as well as the larger dialogue context (e.g., the student’s past
performance and past frequency of expressed uncertainty). However, such evidence is used on a speaker-
dependent basis because particular cues are not used consistently or unambiguously across speakers.

Note finally that the best way to manually label affective states is still an open question. For example, as we
have done, many researchers rely on independent judges (e.g., Porayska-Pomsta et al., 2008; Shafran et al.,
2003; Ang et al., 2002; Narayanan, 2002), while others use self-reports (e.g., McQuiggan et al., 2008; D’Mello
et al., 2008; Yannakakis et al., 2008; Klein et al., 2002). D’Mello et al. (2008) compare multiple types of label-
ing, including self-reports, peer labelers, and trained judges, as well as consensus labelings derived from var-
ious pairings of labelers. Batliner et al. (2008) use majority voting (similar to consensus labeling); they also
provide a detailed discussion of the complications underlying affective state annotation.

4. Developing dynamic substantive uncertainty adaptations for ITSPOKE-WOZ

We derived two dynamic substantive system adaptations for student uncertainty from a hypothesis in the
tutoring dialogue literature that uncertainty and incorrectness both signal learning opportunities, called
“learning impasses”: opportunities for the student to better learn the material about which s/he is uncertain
or incorrect (VanLehn et al., 2003). VanLehn et al. (2003) argue that the learning impasse motivates the stu-
dent to take an active role in constructing a better understanding of the material being tutored.

However, we observed that in order to be motivated to resolve a learning impasse, the student must first
perceive that the impasse exists. Incorrectness and uncertainty differ in terms of this perception. Incorrectness
simply signals that the student has reached a learning impasse, while uncertainty-in both a correct and a incor-
rect answer-signals that the student perceives that they have reached a learning impasse. Based on this distinc-
tion, we associated each of the four possible student answer combinations of binary uncertainty (Uncert, Cert)
and binary correctness (Incor, Cor) with a scalar value from 3 to 0, as shown in Fig. 5. We hypothesized that
these scalar values correspond to the severity of the student’s learning impasse state with respect to his/her
current answer (Forbes-Riley et al., 2008a). In particular, “0” corresponds to a state in which the student
1 Although interpreting Kappa values is somewhat controversial and varies depending on the application field, we find the following
agreement standard (Landis and Koch, 1977) to be a useful guideline: 0.21–0.40 = “Fair”; 0.41–0.60 = “Moderate”; 0.61–
0.80 = “Substantial”; 0.81–1.00 = “Almost Perfect”.

2 See Forbes-Riley et al. (2008c) for further discussion of this annotation. Other studies of affective state in naturally occurring dialogues
in other domains have yielded Fair to Substantial Kappas for other affective state labels (e.g., Ang et al., 2002; Narayanan, 2002; Shafran
et al., 2003).
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is not experiencing an impasse, because s/he is correct and not uncertain about the answer. “3” corresponds to
a state in which the student is experiencing the most severe type of impasse, because s/he is incorrect and is not
aware of it. “2” and “1” correspond to states of lesser severity: the student is incorrect but aware that s/he
might be incorrect, and the student is correct but uncertain about whether s/he is correct, respectively. In For-
bes-Riley et al. (2008a) we show empirical support for distinguishing impasse severities; we show that total and
average learning impasse severity are both significantly negatively correlated with student learning.

As discussed in Section 2, both types of incorrectness impasse ([Incor + Cert] and [Incor + Uncert]) already
receive additional substantive content via a BottomOut or Subdialogue in the non-adaptive ITSPOKE-WOZ.
However, one type of uncertainty impasse is ignored: [Cor + Uncert].

The hypothesis underlying our two uncertainty adaptations is thus that student learning should increase if
the adaptive versions of our ITSPOKE-WOZ provide additional substantive content to remediate every learn-
ing impasse: [Cor + Uncert], [Incor + Uncert], and [Incor + Cert].

4.1. Simple uncertainty adaptation

Our Simple uncertainty adaptation represents the simplest instantiation of this hypothesis: give all learning
impasses the same additional substantive content. Therefore, our Simple-adaptive ITSPOKE-WOZ responds to
[Cor + Uncert] answers in the same way as [Incor + Uncert] and [Incor + Cert] answers: for any given ques-
tion, all three answer types receive the same BottomOut or Subdialogue response. This is illustrated in Fig. 6.
As shown, the [Cor + Uncert] answer in STUDENT receives a Subdialogue response in TUTOR2. Compar-
ison with Fig. 3 shows that this is the same Subdialogue response that incorrect answers already receive in
non-adaptive ITSPOKE-WOZ.

Implementing Simple-adaptive ITSPOKE-WOZ involved changing the next state transitions in ITSPOKE-
WOZ’s finite state dialogue manager. Instead of transitioning based only on the correctness value of the stu-
dent answer, the transition is based on the answer’s combined correctness and uncertainty value: [Cor + Un-
cert], [Incor + Uncert] and [Incor + Cert] answers all transition to the same Subdialogue or BottomOut
response.

Note that Simple-adaptive ITSPOKE-WOZ does not change the feedback given after any student answer.
Identically to non-adaptive ITSPOKE-WOZ, correct answers still receive feedback selected from the following
phrases: Fine; That’s correct; Excellent; That’s right; Good; Right; Correct, and incorrect answers still receive
feedback selected from the following phrases: That doesn’t sound right, I don’t think so, Well. . ., That’s not what

I expected.
Thus, Simple-adaptive ITSPOKE-WOZ differs from non-adaptive ITSPOKE-WOZ only in terms of its

substantive response to [Cor + Uncert] answers. Simple-adaptive ITSPOKE-WOZ and non-adaptive
ITSPOKE-WOZ are identical in terms of their response to [Incor + Uncert], [Incor + Cert] and [Cor + Cert]
answers.

4.2. Complex uncertainty adaptation

Our Complex uncertainty adaptation revises our Simple adaptation based on statistical analysis of human
tutor responses to student uncertainty and correctness. In particular, all learning impasses are again given the

same additional substantive content; however, the dialogue act used to present this content and the feedback
Fig. 6. Example of Simple-adaptive ITSPOKE-WOZ’s adaptation for [Cor + Uncert] answers.
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Table 1
Examples of variations of feedback phrases used in complex uncertainty adaptations for different student answer impasse severities.

Impasse type Examples of feedback phrases used

[Cor + Cert] That’s right
[Cor + Uncert] That’s right, but you don’t sound very certain, so let’s recap
[Incor + Uncert] Good try, but that’s not right. It sounds like you knew there

might be an error in your answer. Let’s fix it
[Incor + Cert] I’m sorry, but there’s a mistake in your answer that we need

to work out
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used to acknowledge the answer both vary depending on the answer’s learning impasse severity (as defined
above in Fig. 5).

4.2.1. Feedback variations in the complex adaptation

Our feedback variations were based on multiple prior computer tutor results discussed in Section 1, which
showed that empathetic system responses can positively impact student performance. Our new feedback
phrases acknowledged both the propositional content (correctness) and the affective content (uncertainty) in
student answers. We authored at least five new feedback phrases for each learning impasse type. Table 1 pro-
vides one example for each impasse type; additional variations are shown below in Figs. 7–10.

As exemplified in Table 1, our feedback phrases for [Cor + Cert] are selected from the same feedback list
used for correct answers in non-adaptive ITSPOKE-WOZ. We decided not to explicitly acknowledge the lack
of a learning impasse in [Cor + Cert] answers because a pilot study showed that this feedback quickly became
annoying to students (e.g., “That’s correct and you don’t sound uncertain so let’s move on.”)

Our feedback phrases for [Cor + Uncert] and [Incor + Uncert] assert that the answer is correct or assert
that it is incorrect in an empathetic manner, while also acknowledging that uncertainty was detected. In this
way the system explains why it will be providing additional substantive content for this turn.3

Our feedback phrases for [Incor + Cert] assert that the answer is incorrect in an empathetic manner,
in order to help the student recognize that a learning impasse has been reached and motivate him/her to
resolve it.

4.2.2. Dialogue act variations in the complex adaptation

Our dialogue act variations of the substantive response content for the different learning impasse types were
based on a statistical analysis of human tutor dialogue behavior. In particular, we used the v2 test to find
dependencies between different learning impasse severities of student answers and nine dialogue act responses
that a human tutor used in the turn immediately following these answers. Our dialogue acts are based on sim-
ilar schemes from other tutorial dialogue projects (e.g., Graesser et al., 1995). This analysis is summarized
below, and discussed in greater detail in Forbes-Riley and Litman (2007).

Our v2 analysis yielded a few impasse–dialogue act response pairs that occurred significantly more or less
than expected by chance. Although the v2 test is not a causal test; we formulated hypotheses about the reasons
underlying these significant dependencies, and from these hypotheses derived specific system adaptations for
each impasse type.

Our first set of dependencies are shown in Table 2. The first column shows the impasse–dialogue act
response pair, and the second and third columns show the observed and expected values for this pair. Com-
parison of the observed and expected values gives the direction of the dependency, which is shown in the last
column: a “�” indicates a dependency where the observed count is significantly less than expected; a “+” indi-
cates a dependency where the observed count is significantly more than expected.

As shown in Table 2, the human tutor responded with a Short Question significantly less than expected
after [Cor + Uncert] answers and significantly more after [Cor + Cert] answers ðp 6 :05Þ. The uncertainty
3 Note that “don’t know” answers (discussed in Section 2.1) are treated as [Incor + Uncert], because if a student asserts that s/he does
not know the answer s/he has already perceived a learning impasse. However, in Complex-adaptive ITSPOKE-WOZ “don’t know”

answers receive specific feedback phrases, such as “I’m sorry you don’t know, but don’t give up. Let’s think about it further”.

Please cite this article in press as: Forbes-Riley, K., Litman, D., Designing and evaluating a wizarded uncertainty-adaptive spoken dia-
logue tutoring system, Computer Speech and Language (2010), doi:10.1016/j.csl.2009.12.002



Fig. 7. Example of Complex-adaptive ITSPOKE-WOZ’s BottomOut adaptation for [Cor + Uncert] answers.

Fig. 8. Example of Complex-adaptive ITSPOKE-WOZ’s BottomOut + Subdialogue adaptation for [Incor + Uncert] answers.

Fig. 9. Example of Complex-adaptive ITSPOKE-WOZ’s new subdialogue adaptation for [Incor + Cert] answers.
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in an [Cor + Uncert] answer indicates that the student has erroneously perceived that s/he might be incorrect;
we hypothesized that the human tutor helped the student resolve this learning impasse before asking another
question. In contrast, the tutor moved on to the next question after a [Cor + Cert] answer because no learning
impasse needs to be resolved.

Our interpretation of the [Cor + Uncert]–Short Question dependency suggests that Complex-adaptive
ITSPOKE-WOZ should not use a question to respond to [Cor + Uncert] answers. Recall that in non-adaptive
ITSPOKE-WOZ, all substantive responses take one of two dialogue act forms (Section 2): BottomOut, which
consists of one or more statements and is used after answers to easier questions, and Subdialogue, which con-
sists of one or more questions and is used after answers to harder questions. Therefore we decided Complex-
adaptive ITSPOKE-WOZ should use a BottomOut to respond to all [Cor + Uncert] answers. We reused the
existing BottomOut responses from non-adaptive ITSPOKE-WOZ for [Cor + Uncert] answers to easier ques-
tions. Since only a Subdialogue response already existed for [Cor + Uncert] answers to harder questions, we
authored a new BottomOut version of this Subdialogue. These new BottomOuts were typically long, because
multiple statements were needed to summarize the content of a Subdialogue.

As an example, Fig. 7 shows how the Subdialogue used by non-adaptive ITSPOKE-WOZ in Fig. 3 has been
changed to a long BottomOut for use in Complex-adaptive ITSPOKE-WOZ to respond to [Cor + Uncert]
Please cite this article in press as: Forbes-Riley, K., Litman, D., Designing and evaluating a wizarded uncertainty-adaptive spoken dia-
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Fig. 10. Corpus excerpts illustrating differing system responses across conditions.

Table 2
Student answer–Short Question dependencies (p 6 .05).

Impasse–dialogue act response pair Observed Expected Direction

[Cor + Uncert]–Short Question 104 121 �
[Cor + Cert]–Short Question 285 268 +

Table 3
Student answer–BottomOut dependencies (p 6 .05).

Impasse–dialogue act response pair Observed Expected Direction

[Incor + Uncert]–BottomOut 82 72 +
[Incor + Cert]–BottomOut 57 67 �
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answers. Table 3 shows the second set of dependencies resulting from our v2 analysis. As shown, the human
tutor responds with a BottomOut significantly more than expected after [Incor + Uncert] answers and signif-
icantly less than expected after [Incor + Cert] answers (p 6 .05). The uncertainty in an [Incor + Uncert]
answer indicates that the student has already perceived that s/he might be incorrect; we hypothesized that
the human tutor therefore immediately helped resolve the learning impasse with a BottomOut. In contrast,
the lack of uncertainty in an [Incor + Cert] answer indicates that the student has not already perceived that
s/he might be incorrect; the human tutor therefore helped the student perceive this learning impasse before
Please cite this article in press as: Forbes-Riley, K., Litman, D., Designing and evaluating a wizarded uncertainty-adaptive spoken dia-
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supplying the correct answer. Our interpretation of the [Incor + Uncert]–BottomOut dependency suggests
that Complex-adaptive ITSPOKE-WOZ should use a BottomOut to respond to all [Incor + Uncert] answers.
For [Incor + Uncert] answers to easier questions we reused the existing BottomOut responses from non-adap-
tive ITSPOKE-WOZ. For [Incor + Uncert] answers to harder questions, only a Subdialogue existed in non-
adaptive ITSPOKE-WOZ; in these cases we used both a new short BottomOut version of the Subdialogue and

the Subdialogue. Our reasoning here was that for [Incor + Uncert] answers to harder questions, a BottomOut
may not suffice to fully resolve both the uncertainty and the incorrectness; instead a new short BottomOut first
simply showed the final solution, then the Subdialogue walked the student through the steps to this solution.
Thus our new BottomOuts for [Incor + Uncert] answers to harder questions were not the same as those we
authored for [Cor + Uncert] answers.

As an example, Fig. 8 shows how the Subdialogue used by non-adaptive ITSPOKE-WOZ in Fig. 3 has been
modified in Complex-adaptive ITSPOKE-WOZ for [Incor + Uncert] answers. A new short BottomOut gives
the correct answer, then the Subdialogue walks the student through the reasoning.

Our interpretation of the [Incor + Cert]–BottomOut dependency suggests that Complex-adaptive
ITSPOKE-WOZ should not use a BottomOut to respond to [Incor + Cert] answers. We thus decided to
use a Subdialogue to respond to all [Incor + Cert] answers. For [Incor + Cert] answers to harder questions
we reused the existing Subdialogues from non-adaptive ITSPOKE-WOZ. Our reasoning here was that the
existing Subdialogue would help students first perceive and then resolve the learning impasse by walking them
through the complex line of reasoning without immediately giving away the correct answer. For [Incor + Cert]
answers to easier questions where only a BottomOut existed in non-adaptive ITSPOKE-WOZ, we used both a
new short Subdialogue version of the BottomOut and the BottomOut. Our reasoning here was that the new
Subdialogue, which consisted of a single easy question, would help students first perceive the impasse and give
them a chance to supply the correct answer, which would then be reinforced and explained in the BottomOut.

As an example, Fig. 9 shows how the BottomOut used by non-adaptive ITSPOKE-WOZ in Fig. 2 has been
modified in Complex-adaptive ITSPOKE-WOZ for [Incor + Cert] answers. A new Subdialogue reasks an eas-
ier version of the question in TUTOR1 after reminding the student of the important concepts to consider.
After the student answers this question (correctly or incorrectly), the existing BottomOut shown in Fig. 2 is
given.

Table 4 summarizes how student answers with different learning impasse severities receive different dialogue
act formats of the same substantive response across the non-adaptive, Simple-adaptive, and Complex-adaptive

ITSPOKE-WOZs.

5. The experiment

To investigate the impact of the Simple-adaptive and Complex-adaptive systems on student performance, we
performed a controlled experiment comparing the two uncertainty-adaptive systems with two control systems.
The experiment had four conditions: two control conditions in which uncertainty was ignored by the system
and two experimental conditions in which uncertainty was dynamically adapted to by the system. Note that
uncertainty was manually labeled by the wizard and logged in all four conditions.

In the Non-adaptive control condition (NonAdapt), student used Non-adaptive ITSPOKE-WOZ, which was
discussed in Section 2.
Table 4
Summary of variations in dialogue act format of substantive response content across non-adaptive, Simple-adaptive, and Complex-adaptive

ITSPOKE-WOZs for different student answer impasse severities.

Impasse severity Dialogue act format of existing substantive response

Non-adapt Simple Complex

[Cor + Cert] NONE NONE NONE
[Cor + Uncert] NONE Existing format Existing format if BottomOut, else new long BottomOut
[Incor + Uncert] Existing format Existing format Existing format if BottomOut, else new short BottomOut + existing Subdialogue
[Incor + Cert] Existing format Existing format Existing format if Subdialogue else new short Subdialogue + existing BottomOut
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In the Simple-adaptive experimental condition (Simple), student used Simple-adaptive ITSPOKE-WOZ,
which was discussed in Section 4.1.

In the Complex-adaptive experimental condition (Complex), student used Complex-adaptive ITSPOKE-
WOZ, which was discussed in Section 4.2.

In the Random-adaptive control condition (Random), student used Random-adaptive ITSPOKE-WOZ, which
provided the Simple adaptation to a percentage of random correct answers. This condition was included to
control for the additional tutoring dialogue given to students in the two experimental conditions. The percent-
age was toggled during the experiment to be similar to the percentage of uncertain answers across the exper-
imental conditions.

Fig. 10 illustrates how the system responses differ across conditions. The figure begins with an initial tutor
question (TUTOR1) and a [Cor + Uncert] student answer (STUDENT1), and is then followed by four corpus
excerpts.

In the NonAdapt excerpt, TUTOR2 provides correctness feedback and then moves on to the next top-level
question. In the Simple excerpt, TUTOR2 provides correctness feedback and then initiates a Subdialogue to
remediate the student’s uncertainty. After this subdialogue completes, ITSPOKE move on to the next top-
level question. In the Complex excerpt, TUTOR2 provides feedback acknowledging both the correctness
and uncertainty of the answer, then provides a BottomOut to remediate the student’s uncertainty, and then
moves on to the next top-level question. In the Random excerpt, TUTOR2 is identical to NonAdapt because
STUDENT1 was not among the correct answers randomly selected to receive the Simple adaptation. That is,
“Randomly Selected = NO”. If “Randomly Selected = YES”, then TUTOR2 in Random and Simple would be
identical.

Subjects were randomly assigned to the 4 conditions, except that conditions were gender-balanced and pre-
test-balanced. To achieve these balances, we kept a running average for pretest score and total males in each
condition; we then assigned subjects to conditions based on which assignment would keep the averages similar
across all conditions. Subjects were native speakers of English who had never taken college-level physics.

The NonAdapt condition contains 21 subjects; the other three conditions contain 20 subjects each, yielding
a total of 81 subjects. Of these 81 subjects, 49 are female and 32 are male, with 7–9 males per condition.

The experimental procedure was as follows. Each subject: (i) read a physics text introducing the concepts to
be tutored (20–40 min); (ii) completed a pretest of 26 multiple choice questions (20–30 min); (iii) used a web/
voice interface to work through five physics problems with a version of the WOZ system (depending on con-
dition) (30–75 min); (iv) completed a survey questionnaire (shown in Fig. 11 and discussed in Section 7) (10–

20 min); and (v) completed a posttest isomorphic to the pretest (20–30 min). After the experiment, the total
time length of the experiment was found to vary from 1.75 h to 3.0 h across all subjects.

The corpus resulting from this experiment is described in Section 7.

6. Evaluating the adaptations: student learning results

In this section we evaluate the impact of Simple-adaptive and Complex-adaptive ITSPOKE-WOZ on stu-
dent learning. Student learning is a primary performance metric in tutoring systems.

Our analysis involves statistical comparisons of learning across conditions. Our results suggest that dynam-
ically adapting to uncertainty with substantive content can significantly improve student learning. In partic-
ular, we ran a two-way ANOVA with condition as the between-subjects factor and repeated test measures as
the within-subjects factor. The ANOVA showed a significant main effect for repeated test measure
(F(1, 77) = 271.214, p < 0.000), indicating that students in all conditions learned a significant amount during
tutoring. There was also a significant interaction effect between condition and repeated test measure
(F(3, 77) = 3.275, p = 0.025), indicating that how much students learned was dependent on condition.

To determine which conditions learned more, we compared two measures of learning gain: raw (post-
test � pretest) and normalized ((posttest � pretest)/(1 � pretest)). For completeness, we also compared post-
test score; however posttest score in isolation is less useful in our data because pretest and posttest score are
highly correlated in this data (R = 0.528, p < 0.000).

For each metric, we ran a one-way ANOVA with condition as the between-subjects factor and used Tukey
tests for post-hoc pairwise comparison of conditions. The ANOVAs revealed significant differences between
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Fig. 11. ITSPOKE-WOZ survey questionnaire.

Table 5
Differences in student learning-related metrics across condition.

Metric Condition Mean SD Diff. p

Raw gain NonAdapt 0.183 0.108 < Simple 0.029
Simple 0.307 0.127 –
Complex 0.213 0.114 –
Random 0.269 0.171 –

Normalized gain NonAdapt 0.382 0.204 < Simple 0.011
Simple 0.626 0.193 –
Complex 0.409 0.213 < Simple 0.034
Random 0.548 0.296 –

Posttest NonAdapt 0.698 0.143 < Simple 0.035
Simple 0.810 0.109 –
Complex 0.706 0.129 –
Random 0.777 0.134 –

Pretest NonAdapt 0.515 0.151 –
Random 0.508 0.155 –
Simple 0.510 0.145 –
Complex 0.492 0.145 –
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conditions in both measures of learning gain: raw (F(3,77) = 3.275, p = 0.025) and normalized
(F(3,77) = 4.658, p = 0.005), as well as for posttest score (F(3,77) = 3.599, p = 0.017). Table 5 shows the sig-
nificant results (p 6 0.05) of the pairwise comparisons for these metrics. The first column shows the metric,
and the remaining columns list the condition, its mean and standard deviation, the condition with which a
difference is found, and the direction (> or <) and significance of this difference.
Please cite this article in press as: Forbes-Riley, K., Litman, D., Designing and evaluating a wizarded uncertainty-adaptive spoken dia-
logue tutoring system, Computer Speech and Language (2010), doi:10.1016/j.csl.2009.12.002



K. Forbes-Riley, D. Litman / Computer Speech and Language xxx (2010) xxx–xxx 15

ARTICLE IN PRESS
As shown, the Simple condition had significantly higher raw gain, normalized gain, and posttest score than
the NonAdapt condition. The Simple condition also had significantly higher normalized gain than the Complex

condition.
A comparison of the means in Table 5 shows that the Complex condition had higher learning gains and

posttest scores than the NonAdapt condition, but lower learning gains and posttest scores than the Random

condition. However, these differences are not significant.
As shown last in Table 5, we compared pretest scores across condition to determine whether or not the ran-

domization of students in the experimental procedure was successful. We found that pretest score did not dif-
fer significantly across conditions (F(3, 77) = 0.085, p = 0.968), indicating that conditions were well-balanced
for pretest score.

In sum, our results show that student learning is significantly improved by using Simple-adaptive

ITSPOKE-WOZ to adapt to student uncertainty as compared to using the non-adaptive ITSPOKE-WOZ,
but student learning is not significantly improved by using Complex-adaptive ITSPOKE-WOZ.

We hypothesize three possible reasons for why the Complex condition did not outperform any other
condition significantly. First, the tutor turns may have been too long in Complex-adaptive ITSPOKE-
WOZ; they were longer in the Complex condition than in all other conditions. This is illustrated in Table 7
below (Section 7, see AV # Tutor Words/Turn) and in Figs. 10 and 7–9. This increased length is due both
to the longer feedback and to the use of new BottomOuts after [Cor + Uncert] and [Incor + Uncert]
answers. A pilot study prior to this experiment revealed that the tutor turns in Complex-adaptive

ITSPOKE-WOZ “feel” overly long to some users, especially to those who read them in the student inter-
face while listening to them. It may be that these users lose focus during, and thus do not learn as much
from, long tutor turns.

Second, our evaluation of Complex-adaptive ITSPOKE-WOZ cannot tease apart the impact of the feed-
back variation and the dialogue act variation of the substantive response content. In other words, it may
be that these two aspects of the Complex adaptation had differing effectiveness overall or for specific user pop-
ulations. For example, the wizard observed during the experiment that while some students seemed to like the
empathetic feedback used in Complex-adaptive ITSPOKE-WOZ, other students seemed annoyed by it, per-
haps because the system did not respond to any other affective state besides uncertainty. Thus, we cannot con-
clude that responding differently to different learning impasse severities (Complex) is less effective than treating
them all the same (Simple).

Third, although it is common for dialogue system behavior, and particularly tutoring dialogue system
behavior, to be modeled on human behavior, our results show that effective computer affect adaptations need
not necessarily be isomorphic to human affect responses. In fact, it may be that different behaviors are actually
optimally effective in computer and human tutors. This hypothesis is supported by our prior research, which
has shown that although our students learn significantly from both our human tutor and ITSPOKE, their
behaviors are very different (Forbes-Riley and Litman, 2008; Litman and Forbes-Riley, 2006b). However,
we do not want to conclude that human tutor-based affect adaptations are less effective in general, because
although our Complex adaptation was derived from statistical generalizations about human tutor responses
to uncertainty, the effectiveness of these responses was not empirically tested before implementation. We
return to this issue in Section 8.

Finally, we hypothesize two reasons for why the Simple condition did not significantly outperform the Ran-

dom condition. For one thing, some of the turns that received the uncertainty adaptation in the Random con-
dition were [Cor + Uncert] turns (13.3%), thus diminishing the difference with the Simple condition. This is
quantified in Table 7 below (Section 7, see the last row). In our next experiment (see Section 8) we will modify
the Random condition so that it only randomly adapts to [Cor + Cert] turns, to avoid this problem. However,
it may also be the case that adapting to [Cor + Cert] answers can benefit student learning, by increasing the
certainty of those answers (e.g., a [Cor + Cert] answer may be actually be neutral for certainty rather than
strongly certain). On the other hand, note that although the Random condition adapted to more correct
answers overall (19.6%) than than the Simple condition (10.9%) (see the penultimate row of Table 7 below),
it did not yield higher learning gains. If it were equally effective to adapt to [Cor + Uncert] and [Cor + Cert]
answers, then we would expect to see the Random condition achieving higher learning gains than the Simple

condition, because it adapted to more correct answers overall. The fact that we do not see this suggests that it
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would not further benefit learning to simply give the Simple adaptation to all correct answers (i.e., to give an
identical response to all correct and incorrect answers (except for correctness feedback)).

7. Corpus description and wider use

The corpus resulting from our experiment consists of 405 digitally recorded (.ogg format) dialogues from 81
students, totaling approximately 70 hours of dialogue. The accompanying log files for each dialogue contain
the tutor turn text (which was sent to the text-to-speech synthesis), the uncertainty annotations of the student
turns (labeled by the wizard), and the student turn transcriptions, which were transcribed manually after the
experiment and merged into the log files. The student transcriptions include the turn text and turn start and
end times relative to the start of the dialogue, as well as punctuation and annotation of disfluencies (e.g., false
starts) and non-syntactic questions (i.e., the “??” such as shown in Figs. 6–8).

Table 6 provides overall corpus details, while Table 7 shows various turn attributes broken down across the
4 conditions of the experiment.

In Table 7, the first two rows describe tutor turn attributes, while the remaining rows describe the student
turns. The last two rows show how the four conditions of the experiment differed in terms of the number and
type of student turns that received an uncertainty adaptation. In particular, the penultimate row shows the
number and percentage of student turns that received an uncertainty adaptation, while the last row shows
the percentage of adapted-to turns that were [Cor + Uncert]. For example, no turns received an adaptation
in the NonAdapt condition. In the Random condition, 19.6% of turns received the Simple adaptation;
13.3% of these were [Cor + Uncert] turns. Since only correct turns were adapted to in the Random condition,
86.7% of the adapted-to turns were [Cor + Cert]. In the Simple condition, 10.9% of the student turns received
the Simple adaptation; all of these were [Cor + Uncert] turns. The Complex condition shows the highest per-
cent of turns adapted to (30.2%) because [Cor + Uncert], [Incor + Uncert], and [Incor + Cert] turns all
received the Complex adaptation.

7.1. Evaluating dialogue performance

In addition to evaluating the utility of our uncertainty adaptations by comparing student learning across
conditions, we are also conducting comparisons of dialogue performance across conditions as part of our
ongoing work, using standard metrics from the dialogue evaluation community (e.g., Walker et al., 1997b;
Möller, 2005; Forbes-Riley and Litman, 2006; Bonneau-Maynard et al., 2000). For although some of our con-
ditions yielded no significant differences in learning, they may still have advantages due to other performance
criteria.

For example, dialogue efficiency is an important performance metric for most dialogue systems, and can be
measured in terms of how much time, or how many words or turns, a given task takes to complete. Dialogue
efficiency is important in tutoring systems too, because students and teachers may not want to use a system
that is inefficient in terms of time to task completion. While to date we’ve found no difference between con-
ditions in terms of standard dialogue efficiency metrics, we have found differences with respect to learning effi-
ciency, which is a related tutoring metric that refers to the amount of learning achieved in a given amount of
Table 6
Uncertainty corpus features.

Student (N = 81) Tutor

Total words 27,457 322,092
Total turns 6561 6561
Total uncertain turns 1491 –
Total correct turns 5147 –
Total [Cor + Cert] turns 4420 –
Total [Cor + Uncert] turns 727 –
Total [Incor + Uncert] turns 764 –
Total [Incor + Cert] turns 650 –
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Table 7
Turn attributes across conditions.

Attribute NonAdapt(N = 21) Random (N = 20) Simple(N = 20) Complex(N = 20)

AV # Tutor turns 78.0 84.5 82.2 79.5
AV # Tutor words/turn 46.6 49.5 47.6 52.2
AV # Student turns 78.0 84.5 82.2 79.5
AV # Student words/turn 5.9 4.0 3.6 3.1
AV #/% Uncertain turns 20.4/26.3 18.1/21.22 19.0/22.5 16.1/20.1
AV #/% Correct turns 58.5/75.6 66.6/79.3 65.6/80.2 63.8/80.8
AV #/% [Cor + Cert] turns 48.8/62.8 58.3/69.6 56.5/69.4 55.0/69.8
AV #/% [Cor + Uncert] turns 9.7/12.8 8.3/9.7 9.2/10.9 8.8/11.0
AV #/% [Incor + Uncert] turns 10.7/13.5 9.9/11.5 9.8/11.6 7.4/9.1
AV #/% [Incor + Cert] turns 8.8/10.9 8.1/9.2 6.8/8.2 8.4/10.1
AV #/% Turns given 0/0 16.5/19.6 9.2/10.9 24.5/30.2
Uncertainty adaptation
Of Adapted-to turns, 0 13.3 100.0 36.0
AV% that are [Cor + Uncert]
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tutoring time (Ringenberg and VanLehn, 2006). In Forbes-Riley and Litman (2009a) we measure learning effi-
ciency in two ways: as normalized learning gain divided by total dialogue time and by total student turns. We
show that Simple-adaptive ITSPOKE-WOZ outperforms non-adaptive ITSPOKE-WOZ and Complex-adap-

tive ITSPOKE-WOZ on both learning efficiency metrics. These results suggest that given the same amount
of tutoring time, students will learn the most from Simple-adaptive ITSPOKE-WOZ.

In addition, many spoken dialogue systems are evaluated in terms of a subjective user satisfaction metric,
which is usually measured via a survey questionnaire and encompasses subjective perceptions of likability, ease
of use, text-to-speech quality, etc. This metric is important in tutoring systems too, as students would not want
to use the system if they do not like it or feel it is sufficiently usable. For this study, we constructed a survey
with the statements in Fig. 11. Students rated their degree of agreement with each statement on a scale of 1–5,
as shown at the bottom of the figure. Statements 1–7, taken from Baylor et al. (2003), were tailored to the
tutoring domain. Statements 8–12 were tailored specifically to the uncertainty adaptations investigated in this
experiment. Statements 13–16, taken from Walker et al. (2001), were more generally applicable to spoken dia-
logue systems. We have used statements 1–7 and 13–16 for our prior ITSPOKE corpora (Forbes-Riley et al.,
2006).

In Forbes-Riley and Litman (2009a) we show that Complex-adaptive ITSPOKE-WOZ outperforms Simple-

adaptive ITSPOKE-WOZ in terms of user satisfaction, in particular, with respect to student perception of
tutor response quality as represented by Statement S13. We hypothesize that this result may indicate a student
preference for the more empathetic feedback in Complex-adaptive ITSPOKE-WOZ.

In Forbes-Riley and Litman (2009b) we show that our learning and user satisfaction results differ for dif-
ferent user populations. In particular, females both learn best from and prefer Simple-adaptive ITSPOKE-
WOZ, while males prefer Complex-adaptive ITSPOKE-WOZ but don’t learn more from either adaptive sys-
tem. Lower domain expertise users prefer Complex-adaptive ITSPOKE-WOZ but learn more from Simple-

adaptive ITSPOKE-WOZ, while higher domain expertise users learn more from Simple-adaptive ITSPOKE-
WOZ but do not prefer either adaptive system. Based on these results, we hypothesize that our uncer-
tainty-adaptive system can be further improved by adapting to user uncertainty differently based on user clas-
ses such as gender and domain expertise.

Dialogue quality is also an important metric that can be measured in a variety of ways, including speech
recognition quality (e.g., word error rate) for fully automated systems, or in terms of system-user interactivity
(e.g., ratio of user to system words or turns, or average words per turn) for both fully automated and WOZ
systems. Dialogue quality is important in tutoring systems too, because students and teachers may not want to
use a system that doesn’t permit a sufficient degree of interactivity. As shown above in Table 7, we have
already computed some measures of dialogue quality for our corpus and plan to compare these and other met-
rics across condition in future work.
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Finally, in recent work we have also investigated metrics related to metacognitive performance. In partic-
ular, we have used our wizard uncertainty annotations to compute measures of “knowledge monitoring” accu-
racy and related metrics (Nietfeld et al., 2006; Saadawi et al., 2009), which quantify the proportion of student
answers that are actually correct when the student is judged to be certain of his/her correctness. We show that
higher knowledge monitoring accuracy is predictive of higher learning in our data and that our uncertainty-
adaptive systems yielded higher knowledge monitoring accuracy than our non-adaptive systems (Litman and
Forbes-Riley, 2009a,b). Based on these results, we hypothesize that responding to student uncertainty can
improve both cognitive and metacognitive performance, and that finding ways to improve knowledge moni-
toring accuracy can improve student learning. We believe that knowledge monitoring accuracy can also be a
relevant construct for other dialogue applications involving knowledge asymmetry, such as problem-solving,
instruction giving, and trouble shooting (e.g., Janarthanam and Lemon, 2008).

7.2. Linguistic resource for studying affect

The collected corpus itself is another important result of this study, in that it provides a novel resource for
analyzing prosody and other linguistic features of naturally occurring user affect in human–computer interac-
tion, particularly for use in automatic affect detection in spoken dialogue systems. For although there has been
significant prior research on the prosody of elicited or acted emotions (e.g., Oudeyer, 2002; Liscombe et al.,
2003), these results generally transfer poorly to naturally occurring emotions (Cowie and Cornelius, 2003; Bat-
liner et al., 2003). Thus recent research on affect-adaptive spoken dialogue systems has focused on analyzing
and detecting naturally occurring user affect (e.g., Vidrascu and Devillers, 2005; Batliner et al., 2003; Shafran
et al., 2003).

Although this research could be substantially aided by studying affect annotated dialogues between users
and adaptive systems, to date only a few such corpora have been reported or made publicly available to
the computer speech and language community. For example, the HUMAINE project4 contains a substantial
collection of publicly available speech corpora annotated for speaker affective states, but very few of these cor-
pora contain naturally occurring human–computer dialogues (e.g., Batliner et al., 2004; Walker et al., 2001;
Ang et al., 2002). Moreover, of these, only the DARPA Communicator corpus uses English; it contains dia-
logues in the travel-planning (i.e., form-filling) domain, and user turns are annotated for the affective states of
frustration and annoyance.

This corpus provides an additional resource for this active research area, because it reflects a new and com-
plex human–computer interaction domain, it provides manual annotation of a new affective state, and it
makes available a large number of features derived from the speech files and log files. We have already shown
that useful predictive models of student affect in general, and student uncertainty specifically, can be built
using similar features available in our prior ITSPOKE corpora (Litman and Forbes-Riley, 2006a; Ai et al.,
2006). Moreover, we have observed informally that other student affective states also occur with some regu-
larity in our corpus, namely disengagement as indicated by expressions of irritation, anger, annoyance, bore-
dom, and humor. Although our corpus will eventually be linked to a website for access by the wider computer
speech and language community, in the meantime interested users should contact the authors. In addition, we
have already made publicly available a small corpus from a related pilot study (Forbes-Riley et al., 2008a,b).5

8. Conclusions and current directions

This article discussed the design of two versions of a wizarded spoken dialogue tutoring system that dynam-
ically adapts to student uncertainty over and above correctness, and described a controlled experiment evaluating
these two different uncertainty-adaptive systems. Both uncertainty adaptations were derived from prior tutoring
research and were based on the view that uncertainty and incorrectness signal learning impasses. Both adaptive
systems responded to uncertain student turns with the same substantive content that was already given to
4 http://emotion-research.net.
5 This pilot corpus contains approximately 20 hours of recorded dialogue and can be obtained from the Pittsburgh Science of Learning

Center’s Datashop at https://learnlab.web.cmu.edu/datashop/index.jsp.
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incorrect turns in the original non-adaptive system, but the two adaptive systems differed in complexity. Simple-

adaptive ITSPOKE-WOZ gave the substantive response along with correctness feedback to all learning impasses
([Cor + Uncert], [Incor + Uncert] or [Incor + Cert] answers). Complex-adaptive ITSPOKE-WOZ varied the
dialogue act presentation of the substantive response depending on the learning impasse type, where the varia-
tions were based on statistical analysis of human tutor dialogue act variations. Complex-adaptive ITSPOKE-
WOZ also varied its empathetic feedback phrases depending on the learning impasse type.

Our results showed that the Simple-adaptive ITSPOKE-WOZ significantly improved student learning as
compared to the non-adaptive ITSPOKE-WOZ and Complex-adaptive ITSPOKE-WOZ. To our knowledge
we are the first study to show that dynamically responding to student uncertainty can significantly improve
learning during computer tutoring.

There were three main limitations to our study. Two of these limitations involve the design of the dialogue
strategies that we developed to adapt dynamically to student uncertainty. First, although our human-tutor
based Complex adaptation was derived from statistical generalizations about a successful human tutor’s
responses to uncertainty, the effectiveness of these responses was not empirically tested before implementation.
In other words, although we know that students learned from our human tutor, we do not know whether or
not the specific human tutor responses we found to be associated with uncertain answers are also associated
with increased learning. In future work we will investigate approaches for isolating human tutor responses to
uncertainty that do optimize learning. Such approaches include investigating correlations between human
tutor responses to uncertainty and learning, as well as using reinforcement learning. In the larger field of spo-
ken dialogue systems, reinforcement learning is often used to automatically extract effective dialogue system
responses that depend on the current user state (Singh et al., 2002; Walker et al., 1998). In prior work with the
ITSPOKE system, Tetreault and Litman (2008) used reinforcement learning to extract system responses that
depended on user uncertainty as well as other user turn features. However, these responses were not imple-
mented or evaluated in a controlled experiment. Moreover, since they were extracted from existing ITSPOKE
corpora, only existing ITSPOKE responses were considered as possible adaptive strategies. In future work we
will investigate using reinforcement learning in our human-tutoring corpus to determine effective human tutor
responses to uncertainty. Investigating the responses of multiple human tutors may help to yield a wider var-
iation in human tutor responses to uncertainty to consider for implementation (Porayska-Pomsta et al., 2008;
Lehman et al., 2008). However, studying multiple human tutors does not necessarily yield consistent general-
izations about the “best” human-based adaptive strategies to implement, because human tutors have different
teaching styles and skill levels (Porayska-Pomsta et al., 2008).

Another limitation of our study is that our dialogue strategies for responding to student uncertainty were
hand-crafted, rather than being generated automatically using natural language generation; thus neither the
content nor the form of our uncertainty adaptations can be easily modified using parameters as would be pro-
vided by a natural language generation engine. Although currently outside the scope of our tutoring system
research, the incorporation of affect into natural language generation is a very active research area in the larger
field of dialogue systems, which aims to provide the technical underpinnings of fully generative affect-adaptive
dialogue systems (Mairesse and Walker, 2008; Oberlander and Nowson, 2006; Walker et al., 1997a).

Finally, in this study a human wizard performed speech recognition and understanding, and uncertainty
detection, thereby eliminating the potential for system errors on these tasks to impact the effectiveness of
the uncertainty adaptations. Our next step will be to run a similar experiment with fully automated ITSPOKE
versions replacing the WOZ system versions. In this next experiment, student uncertainty will be automatically
detected, and speech recognition and natural language understanding will be fully automatic. Just as in this
paper we showed that detecting and dynamically responding to student uncertainty can significantly improve
student learning when these tasks are wizarded, we hope that the next experiment will show that similar results
hold even when these tasks are fully automated.
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