Section 5.1
 The Basics of Counting

THE RULE OF SUM

If A and B are disjoint sets then $|A \cup B|=|A|+|B|$

Example:
Suppose statement labels in a programming language must be a single letter or a single decimal digit.

Since a label cannot be both at the same time,
the number of labels
$=$ the number of letters + the number of decimal digits
$=26+10=36$.

THE RULE OF PRODUCT

$|\mathrm{AXB}|=|\mathrm{A}||\mathrm{B}|$

Example:

- Statement labels in Basic can be either
- a single letter or
- a letter followed by a digit.

Find the number of possible labels.
We can partition the set of all labels L into the disjoint subsets consisting of

- the set of single letter labels S
and
- the set of single letters followed by a digit D
and
- $L=S \cup D$.

Use the rule of sum to compute the cardinality of L if we can compute the cardinality of D.

- The elements of D are ordered pairs of the form [a, d] where a is an alphabetic character and d is a digit.
- By the rule of product the cardinality of D is the product of the cardinality of the two sets:
- (the alphabetic characters)(the decimal digits)

$$
=(26)(10)
$$

$$
=260 .
$$

The cardinality of L is $26+260=286$.

THE PRINCIPLE OF INCLUSION-EXCLUSION

If A and B are not disjoint:

$$
|A \cup B|=|A|+|B|-|A \cap B|
$$

Don't count objects in the intersection of two sets more than once!

Example:
Count the number of bit strings of length 4 which begin with a 1 or end with a 00 .

The set can be expressed as the union of

- the subset S of strings which begin with 1
and
- the subset O that end in 00 .

Unfortunately the two subsets overlap.

- The cardinality of S is 8 (why?)
- The cardinality of O is 4 (why?).

Hence, by the exclusion-inclusion principle, the cardinality of the union is 12 minus the cardinality of the intersection.

How many strings are in the intersection?
Those strings that begin with 1 and end in 00 or 2 such strings.

The total number is $10=8+4-2$.
Check:

- Strings in S that begin with 1:

1000, 1001, 1010, 1011, 1100, 1101, 1110, 1111

- Strings O that end with 00:
$0000,0100,1000,1100$
- 1000 and 1100 appear in both sets.

Count them once.

More Counting Examples:
Find the number of three-letter initials where none of the letters is repeated.

Apply the rule of product remembering that a letter cannot appear twice to get
(26)(25)(24).

Count the number of bit strings of length 4 .

Apply the rule of product to get 24 .

Count the number of bit strings of length 4 or less.
Apply the rule of sum to get the disjoint subsets of length 1, 2, 3 and 4.

Then apply the rule of product to count each subset to get

$$
2+4+8+16=2^{1}+2^{2}+23+24 .
$$

Count the set S of 3 digit numbers which begin or end with an even digit.

Assume that 0 is even but a number cannot begin with 0 .
The set is the union of the two subsets:

- The set B of three digit numbers that begin with $2,4,6$ or 8 .

This set has cardinality
(4)(10)(10).
(why?)

- The set C of three digit numbers that end with $0,2,4,6$, or 8 and do not begin with 0 .

This set has cardinality

$$
(5)(9)(10) .
$$

(why?)

- Now we use the inclusion-exclusion principle to eliminate the overlap of sets B and C.

Their intersection:
The 3 digit numbers that begin with $2,4,6$, or 8 and end with $0,2,4,6$, or 8 .

The intersection has the cardinality
(4)(10)(5)

Hence the cardinality is

$$
400+450-200=650 .
$$

