Section 4.3

Recursive Definitions and Structural Induction

Recursive or inductive definitions of sets and functions on recursively defined sets are similar.

1. Basis step:

For sets-

- State the basic building blocks (BBB's) of the set.
or
For functions-
- State the values of the function on the BBB's.

2. Inductive or recursive step:

For sets-

- Show how to build new things from old with some construction rules.

Or
For functions-

- Show how to compute the value of a function on the new things that can be built knowing the value on the old things.

3. Extremal clause:

For sets-

- If you can't build it with a finite number of applications of steps 1 . and 2. then it isn't in the set.

For functions-

- A function defined on a recursively defined set does not require an extremal clause.

Note: Your author doesn't mention the extremal clause.
It is a standard part of an inductive definition of a set but often ignored ("since everybody knows it is supposed to be there").

Also note:

- To prove something is in the set you must show how to construct it with a finite number of applications of the basis and inductive steps.
- To prove something is not in the set is often more difficult.

Example:
A recursive definition of N :

1. Basis:

0 is in N (0 is the BBB).

2. Induction:

if n is in N then so is $\mathrm{n}+1$ (how to build new objects from old: "add one to an old object to get a new one").

3. Extremal clause:

If you can't construct it with a finite number of applications of 1. and 2., it isn't in N .

Now given the above recursive definition of N we can give recursive definitions of functions on N :

1. $\mathrm{f}(0)=1$ (the initial condition or the value of the function on the BBB's).
2. $\mathrm{f}(\mathrm{n}+1)=(\mathrm{n}+1) \mathrm{f}(\mathrm{n})$ (the recurrence equation, how to define f on the new objects based on its value on old objects)
f is the factorial function: $\mathrm{f}(\mathrm{n})=\mathrm{n}$!.
Note how it follows the recursive definition of N .

Proof of assertions about inductively defined objects usually involves a

Proof by induction.

- Prove the assertion is true for the BBBs in the basis step.
- Prove that if the assertion is true for the old objects it must be true for the new objects you can build from the old objects.
- Conclude the assertion must be true for all objects.

Example:
We define a^{n} inductively where n is in N .

- Basis: $a^{0}=1$
- Induction: $a^{(n+1)}=a^{n} a$

Theorem: $\forall m \forall n\left[a^{m} a^{n}=a^{m+n}\right]$
Proof:
Since the powers of a have been defined inductively we must use a proof by induction somewhere.

Get rid of the first quantifier on m by Universal Instantiation:

- Assume m is arbitrary.

Now prove the remaining quantified assertion

$$
\forall n\left[a^{m} a^{n}=a^{m+n}\right]
$$

by induction:

1. Basis step: Show it holds for $\mathrm{n}=0$.

The left side becomes $a^{m} a^{0}=a^{m}(1)=a^{m}$
The right side becomes $a^{m+0}=a^{m}$
Hence, the two sides are equal to the same value.
2. Induction step: The Induction hypothesis:

Assume the assertion is true for $\mathrm{n}: a^{m} a^{n}=a^{m+n}$.
Now show it is true for $n+1$.
The left side becomes

$$
a^{m} a^{n+1}=a^{m}\left(a^{n} a\right)=\left(a^{m} a^{n}\right) a=a^{m+n} a
$$

which follows from

- the inductive step in the definition of a^{n} and
- the induction hypothesis and
- the associativity of multiplication.

The right side becomes

$$
a^{m+(n+1)}=a^{(m+n)+1}=a^{m+n} a
$$

which follows from

- the inductive definition of the powers of a
- the associativity of addition.

Hence, we have shown for arbitrary m that

$$
\forall n\left[a^{m} a^{n}=a^{m+n}\right]
$$

is true by induction.
Since m was arbitrary, by Universal Generalization,

$$
\forall m \forall n\left[a^{m} a^{n}=a^{m+n}\right] .
$$

Q. E. D.

Example: A recursive definition of the Fibonacci sequence

1. Basis:

$$
\mathrm{f}(0)=\mathrm{f}(1)=1
$$

(two initial conditions)
2. Induction:

$$
\mathrm{f}(\mathrm{n}+1)=\mathrm{f}(\mathrm{n})+\mathrm{f}(\mathrm{n}-1)
$$

(the recurrence equation).

Example:

A recursive definition of the set of strings over a finite alphabet \sum.

The set of all strings (including the empty or null string λ) is called (the monoid) \sum^{*}.
(Excluding the empty string it is called \sum^{+}.)

1. Basis:

The empty string λ is in \sum^{*}.
2. Induction:

If w is in \sum^{*} and a is a symbol in \sum, then $w a$ is in \sum^{*}.

Note: we can concatenate a on the right or left, but it makes a difference in proofs since concatenation is not commutative!
3. Extremal clause.

Note: infinitely long strings cannot be in \sum^{*}. (why?)

Example:

Let $\sum=\{a, b\}$. Then $a a b$ is in \sum^{*}.
Proof:
We construct it with a finite number of applications of the basis and inductive steps in the definition of \sum^{*} :

1. λ is in \sum^{*} by the basis step.
2. By step 1., the induction clause in the definition of \sum^{*} and the fact that a is in \sum, we can conclude that $\lambda \mathrm{a}=\mathrm{a}$ is in \sum^{*}.
3. Since a is in \sum^{*} from step 2., and a is a symbol in \sum, applying the induction clause again we conclude that aa is in \sum^{*}.
4. Since a a is in \sum^{*} from step 3 and b is in \sum, applying the induction clause again we conclude that aab is in \sum^{*}.

Since we have shown aab is in \sum^{*} with a finite number of applications of the basis and induction clauses in the definition we have finished the proof.
Q.E.D.

Example:

We give an inductive definition of the well formed parenthesis strings P:

1. Basis clause:

() is in P

2. Induction clause:

if w is in P then so are

() $w,(w)$, and $w()$
3. Extremal clause

Example:
$(()())$ is in P .
Proof:

1. () is in P by the basis clause
2. ()() must be in P by step 1. and the induction clause
3. (() ()) must be in P by step 2. and the induction clause.
Q. E. D.

Note:))(() is not in P. Why? Can you prove it?
(Hint: what can you say about the length of strings in P ? How can you order the strings in P?)

One More Example:

The set S of bit strings with no more than a single 1 .

Basis:

$$
\lambda, 0,1 \text { are in } S
$$

Induction:

if w is in S, then so are $0 w$ and $w 0$
Extremal Clause

