
                   Section 4.3
Recursive Definitions and Structural Induction

Recursive or inductive definitions of sets and functions on
recursively defined sets are similar.

1. Basis step:

For sets-

• State the basic building blocks (BBB's) of the
set.

or
For functions-

• State the values of the function on the BBB’s.

2. Inductive or recursive step:

For sets-

• Show how to build new things from old with
some construction rules.

or
For functions-

• Show how to compute the value of a function
on the new things that can be built knowing the value on
the old things.
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3. Extremal clause:

For sets-

• If you can't build it with a finite number of
applications of steps 1. and 2. then it isn't in the set.

For functions-

• A function defined on a recursively defined set
does not require an extremal clause.

_____________________

Note: Your author doesn't mention the extremal clause.

It is a standard part of an inductive definition of a set but
often ignored (“since everybody knows it is supposed to be
there”).

Also note:

• To prove something is in the set you must show how
to construct it with a finite number of applications of the
basis and inductive steps.

• To prove something is not in the set is often more
difficult.

_____________________

Example:

A recursive definition of N:
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1. Basis:

0 is in N  (0 is the BBB).

2. Induction:

if n is in N then so is n + 1 (how to build
new objects from old: “add one to an old object to get
a new one”).

3. Extremal clause:

If you can't construct it with a finite number
of applications of 1. and 2., it isn't in N.

Now given the above recursive definition of N we can give
recursive definitions of functions on N:

1. f(0) = 1 (the initial condition  or the value of the
function on the BBB’s).

2. f(n + 1) = (n + 1) f(n) (the recurrence equation,
how to define f on the new objects based on its value on
old objects)

f is the factorial function: f(n) = n!.

Note how it follows the recursive definition of N. 
____________________

Proof of assertions about inductively defined objects
usually involves a
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Proof by induction. 

• Prove the assertion is true for the BBBs in the basis
step.

• Prove that if the assertion is true for the old objects
it must be true for the new objects you can build from the
old objects.

• Conclude the assertion must be true for all objects.
______________________

Example:

We define an inductively where n is in N.

• Basis: a0= 1

• Induction: a(n + 1) = an a
________________________

Theorem: ∀m∀n[aman = am+n ]

Proof:

Since the powers of a have been defined inductively we
must use a proof by induction somewhere.

Get rid of the first quantifier on m by Universal
Instantiation:

• Assume m is arbitrary.
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Now prove the remaining quantified assertion

∀n[aman = am+n ]

by induction:

1. Basis step: Show it holds for n = 0.

The left side becomes ama0 = am (1) = am

The right side becomes am+0 = am

Hence, the two sides are equal to the same value.

2. Induction step:     The Induction hypothesis:

 Assume the assertion is true for n: aman = am+ n.

Now show it is true for n  + 1.

The left side becomes

aman+1 = am (ana) = (aman )a = am+na

which follows from

• the inductive step in the definition of an and

• the induction hypothesis and

• the associativity of multiplication.

The right side becomes

am+(n+1) = a(m+n )+1 = am+na
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which follows from

• the inductive definition of the powers of a

• the associativity of addition.

Hence, we have shown for arbitrary m that

∀n[aman = am+n ]

is true by induction.

Since m was arbitrary, by Universal Generalization,

∀m∀n[aman = am+n ].

Q. E. D.
________________________

Example: A recursive definition of the Fibonacci sequence

1. Basis:

f(0) = f(1) = 1

(two initial conditions)

2. Induction:

f(n + 1) = f (n) + f(n - 1)

(the recurrence equation).
______________________
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Example:

A recursive definition of the set of strings over a finite
alphabet ∑.

The set of all strings (including the empty or null string λ )
is called (the monoid) ∑*.

(Excluding the empty string it is called ∑+. )

1. Basis:

The empty string λ  is in ∑*.

2. Induction:

If w is in ∑* and a is a symbol in ∑, then
wa  is in ∑*.

Note: we can concatenate a on the right or left, but it
makes a difference in proofs since concatenation is not
commutative!

3. Extremal clause.
______________________

Note: infinitely long strings cannot be in ∑*. (why?)

________________________
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Example:

Let ∑ = {a, b}. Then aab is in ∑*.

Proof:

We construct it with a finite number of applications of the
basis and inductive steps in the definition of ∑*:

1. λ  is in ∑* by the basis step.

2. By step 1., the induction clause in the definition of
∑* and the fact that a is in ∑, we can conclude that λ a = a
is in ∑*.

3. Since a is in ∑* from step 2., and a is a symbol in
∑, applying the induction clause again we conclude that aa
is in ∑*.

4. Since aa is in ∑* from step 3 and b is in ∑,
applying the induction clause again we conclude that aab is
in ∑*.

Since we have shown aab is in ∑* with a finite number of
applications of the basis and induction clauses in the
definition we have finished the proof.

Q.E.D.
_____________________
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Example:

We give an inductive definition of the well formed
parenthesis strings P:

1. Basis clause:

( ) is in P

2. Induction clause:

if w is in P then so are

( ) w, (w), and w( )

3. Extremal clause

______________

Example:

 (( )( )) is in P.

Proof:
1. ( ) is in P by the basis clause

2. ( )( ) must be in P by step 1. and the induction
clause

3. (( ) ( )) must be in P by step 2. and the induction
clause.

Q. E. D. 
_____________________

Note: ))(( ) is not in P. Why? Can you prove it?
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(Hint: what can you say about the length of strings in P?
How can you order the strings in P?)

______________________

One More Example:

The set S of bit strings with no more than a single 1.

Basis:

λ  , 0 , 1 are in S

Induction:

if w is in S, then so are 0w and w0

Extremal Clause

_________________
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