
      Section 4.1 - Mathematical Induction       
                                       and 
Section 4.2 -  Strong Induction and Well-Ordering
 

A very special rule of inference!

Definition: A set S is well ordered if every subset has a
least element.

Note: [0, 1] is not well ordered since (0,1] does not have a
least element.

________________

Examples:

• N is well ordered (under the ≤ relation)

• Any coutably infinite set can be well ordered

The least element in a subset is determined by a bijection
(list) which exists from N to the countably infinite set.

• Z can be well ordered but it is not well ordered
under the ≤ relation (Z has no smallest element).

• The set of finite strings over an alphabet using
lexicographic ordering is well ordered.

Let P(x) be a predicate over a well ordered set S.

The problem is to prove

∀xP(x) .
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The rule of inference called

  The (first)  principle of Mathematical Induction

can sometimes be used to establish the universally
quantified assertion.

In the case that S = N,  the natural numbers,  the principle
has the following form.

P(0)

P(n) → P(n +1)

∴∀xP(x)

The hypotheses are

H1: P(0)
and

H2: P(n) → P(n +1) for n arbitrary.

• H1 is called  The Basis Step.

• H2 is called The Induction (Inductive) Step

_____________________

• We first prove that the predicate is true for the
smallest element of the set S (0 if S = N).

• We then show if it is true for an element x (n if S =
N)  implies it is true for the “next” element in the set (n +
1 if S = N).
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Then

• knowing it is true for the first element  means it
must be true for the element following the first or the
second element

• knowing it is true for the second element implies it
is true for the third

and so forth.

Therefore, induction is equivalent to modus ponens
applied an countable number of times!!

______________

It is like a row of dominos:

If the nth domino falls over the (n+1)st must fall over
so pushing the first one down means all must fall down.

• To prove H2 we normally use a     Direct Proof   .

• Assuming P(n) to be true for arbitrary n is called the
Induction (Inductive) Hypothesis.

____________________

Example: (a classic)
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Prove:

 i
i=0

n

∑ =
n(n +1)

2

In logical notation we wish to show

∀n[ i
i=0

n

∑ =
n(n +1)

2
]

Hence, the predicate P(n) is

i
i=0

n

∑ =
n(n +1)

2
.

    Note: Identifying P(x) is often the hardest part!   

• We first prove H1: P(0): 0 = i
i=0

0

∑  =  
0(0 +1)

2

• Now establish H2 using a direct proof:

•     State the Induction Hypotheses    :

• Assume P(n) is true for n arbitrary

(this looks as if you are assuming the truth of what is to be
proved and hence we have a circular argument. This is    not   
the case.)

• Now use this and anything else you know to
establish that P(n + 1)  must be true.
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P(n + 1)  is the assertion

i
i=0

n+1

∑ =
(n +1)((n +1)+1)

2

(Note:      Write down the assertion        P(n+1)      !     Don't make it
hard for yourself because you don't know what it is you are
to prove.)

But,

i
i=0

n+1

∑ = i
i=1

n

∑ + (n +1)

using the property of summations.

Now apply the    induction hypothesis   .

Note: you must manipulate the assertion P(n+1) so that
you can apply the induction hypothesis P(n). If you do not
apply the induction hypothesis somewhere,  it is    not    a
valid induction proof.

Use the assumption P(n) to substitute

 
n(n +1)

2
 for i

i=0

n

∑

to get

i
i=0

n+1

∑ =
n(n +1)

2
+ (n +1)

and we manipulate the right side to get
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i
i=0

n+1

∑ =
(n +1)((n +1)+1)

2

which is exactly P(n+1).   

Hence, we have established H2.

We now say by the Principle of Mathematical Induction it
follows that P(n) is true for all n or

∀n[ i
i=0

n

∑ =
n(n +1)

2
]

 Q.E.D.
_____________________

We can use the Principle to prove more general assertions
because N is well ordered.

Suppose we wish to prove for some specific integer k

∀x[n ≥ k → P(x)]

Now we merely change the basis step to P(k) and
continue.

__________________

Example:

Show

3n + 5 is O(n2).

Transparencies to accompany Rosen, Discrete Mathematics and Its Applications Sections 4.1 & 4.2

Prepared by: David F. McAllister TP 6 ©1999, 2007 McGraw-Hill



Proof:

We must find C and k such that

3n + 5 ≤ Cn2

whenever n ≥ k (or n > k-1).

If we try C = 1, then the assertion is not true until k = 5.

Hence we prove by induction that 3n + 5 ≤ n2 for all n ≥ 5.

The assertion becomes

∀n[n ≥ 5 → 3n + 5 ≤ n2 ]

and the predicate P(n) is 3n + 5 ≤ n2

• Basis step: P(5): 3x5 + 5 = 20 ≤ (5)2 which
establishes the basis step.

• The induction hypothesis: assume P(n): 3n + 5 ≤ n2

is true for n arbitrary.

• Use this and any other clever things you know to
show P(n+1).

     Write down the assertion        P(n+1)      !   

P(n+1): 3(n +1)+ 5 ≤ (n +1)2

Now put it in a form which will allow you to apply the
induction hypothesis.
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We rewrite the left side as (3n + 5) + 3 and apply the
induction hypothesis to (3n+5) which we assume is less
than n2.

Now we must show that

n2 + 3 ≤ (n + 1)2 = n2 + 2n + 1

which is true iff

3 ≤ 2n + 1

which is true iff

n  ≥ 1.

But we have already restricted n ≥ 5 so n  ≥ 1 must hold.

Hence we have established the induction step and the
assertion must be true for all n:

∀n[n ≥ 5 → 3n + 5 ≤ n2 ]

Q.E.D.
______________________

Note: in doubly quantified assertions of the form

∀m∀n[P(m,n)]

we often assume m (or n ) is arbitrary to eliminate a
quantifier and prove the remaining result using induction.

__________________
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Another Example:

All horses are the same color.

Proof: We do induction on the size of sets of horses of the
same color.

 • Basis step: The assertion is obviously true for all
sets of  0 horses (and all sets with 1 horse).

• Induction step: The induction hypothesis becomes
'Assume the assertion is true for all sets with n horses.'

Now show it must be true for all sets of n+1 horses.

But every set of n+1 horses has an overlap of horses
which are the same color.

X   X   X   X   X   X   X  .  .  .   X   X

n + 1 horses

n horses

n horses

Hence the set of n+1 horses must have the same
color.

Therefore, all horses have the same color.

What's wrong?
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The Second Principle of Mathematical Induction

 The rule of inference becomes:

H1: P(0)

H2: P(0) ∧ P(1)∧... ∧P(n) → P(n +1)

∴∀xP(x)

The two rules are equivalent but sometimes the second is
easier to apply. See your text for the classic examples.

________________
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