Section 4.1 - Mathematical Induction and Section 4.2 - Strong Induction and Well-Ordering

A very special rule of inference!

Definition: A set S is *well ordered* if every subset has a least element.

Note: [0, 1] is not well ordered since (0,1] does not have a least element.

Examples:

- N is well ordered (under the relation)
- Any coutably infinite set can be well ordered

The least element in a subset is determined by a bijection (list) which exists from N to the countably infinite set.

• Z can be well ordered but it is not well ordered under the relation (Z has no smallest element).

• The set of finite strings over an alphabet using lexicographic ordering is well ordered.

Let P(x) be a predicate over a well ordered set S.

The problem is to prove

xP(x).

The rule of inference called

The (first) principle of Mathematical Induction

can sometimes be used to establish the universally quantified assertion.

In the case that S = N, the natural numbers, the principle has the following form.

$$P(0)$$

$$P(n) \qquad P(n+1)$$

$$xP(x)$$

The hypotheses are

H1: *P*(0)

and

H2: P(n) = P(n+1) for n arbitrary.

- H1 is called *The Basis Step*.
- H2 is called *The Induction (Inductive) Step*

• We first prove that the predicate is true for the smallest element of the set S (0 if S = N).

• We then show if it is true for an element x (n if S = N) implies it is true for the "next" element in the set (n + 1 if S = N).

Then

• knowing it is true for the first element means it must be true for the element following the first or the second element

• knowing it is true for the second element implies it is true for the third

and so forth.

Therefore, induction is equivalent to *modus ponens* applied an countable number of times!!

It is like a row of dominos:

If the nth domino falls over the (n+1)st must fall over so pushing the first one down means all must fall down.

• To prove H2 we normally use a <u>Direct Proof</u>.

• Assuming P(n) to be true for arbitrary n is called the *Induction (Inductive) Hypothesis.*

Example: (a classic)

Prove:

$$\sum_{i=0}^{n} i = \frac{n(n+1)}{2}$$

In logical notation we wish to show

$$n[\sum_{i=0}^{n} i = \frac{n(n+1)}{2}]$$

Hence, the predicate P(n) is

$$_{i=0}^{n}i=\frac{n(n+1)}{2}.$$

Note: Identifying P(x) is often the hardest part!

- We first prove H1: $P(0): 0 = \int_{i=0}^{0} i = \frac{0(0+1)}{2}$
- Now establish H2 using a direct proof:
- <u>State the Induction Hypotheses</u> :
- Assume P(n) is true for n arbitrary

(this looks as if you are assuming the truth of what is to be proved and hence we have a circular argument. This is <u>not</u> the case.)

• Now use this and anything else you know to establish that P(n + 1) must be true.

P(n + 1) is the assertion

$$\sum_{i=0}^{n+1} i = \frac{(n+1)((n+1)+1)}{2}$$

(Note: Write down the assertion P(n+1)! Don't make it hard for yourself because you don't know what it is you are to prove.)

But,

$$\sum_{i=0}^{n+1} i = \sum_{i=1}^{n} i + (n+1)$$

using the property of summations.

Now apply the induction hypothesis.

Note: you must manipulate the assertion P(n+1) so that you can apply the induction hypothesis P(n). If you do not apply the induction hypothesis somewhere, it is <u>not</u> a valid induction proof.

Use the assumption P(n) to substitute

$$\frac{n(n+1)}{2} \text{ for } \prod_{i=0}^{n} i$$

to get

$$\sum_{i=0}^{n+1} i = \frac{n(n+1)}{2} + (n+1)$$

and we manipulate the right side to get

$$\sum_{i=0}^{n+1} i = \frac{(n+1)((n+1)+1)}{2}$$

which is exactly P(n+1).

Hence, we have established H2.

We now say by the Principle of Mathematical Induction it follows that P(n) is true for all n *or*

$$n[\sum_{i=0}^{n} i = \frac{n(n+1)}{2}]$$

Q.E.D.

We can use the Principle to prove more general assertions because N is well ordered.

Suppose we wish to prove for some specific integer k

 $x[n \quad k \quad P(x)]$

Now we merely change the basis step to P(k) and continue.

Example:

Show

$$3n + 5$$
 is $O(n^2)$.

Proof:

We must find C and k such that

$$3n + 5 Cn^2$$

whenever n k (or n > k-1).

If we try C = 1, then the assertion is not true until k = 5.

Hence we prove by induction that $3n + 5 = n^2$ for all n = 5.

The assertion becomes

$$n[n \ 5 \ 3n+5 \ n^2]$$

and the predicate P(n) is $3n + 5 n^2$

• Basis step: P(5): 3x5 + 5 = 20 (5)² which establishes the basis step.

• The induction hypothesis: assume P(n): $3n + 5 n^2$ is true for n arbitrary.

• Use this and any other clever things you know to show P(n+1).

Write down the assertion P(n+1)!

$$P(n+1): 3(n+1)+5 (n+1)^2$$

Now put it in a form which will allow you to apply the induction hypothesis.

We rewrite the left side as (3n + 5) + 3 and apply the induction hypothesis to (3n+5) which we assume is less than n^2 .

Now we must show that

$$n^2 + 3$$
 $(n + 1)^2 = n^2 + 2n + 1$

which is true iff

 $3 \quad 2n+1$

which is true iff

n 1.

But we have already restricted n 5 so n 1 must hold.

Hence we have established the induction step and the assertion must be true for all n:

 $n[n \ 5 \ 3n+5 \ n^2]$

Q.E.D.

Note: in doubly quantified assertions of the form

m n[P(m,n)]

we often assume m (or n) is arbitrary to eliminate a quantifier and prove the remaining result using induction.

Prepared by: David F. McAllister

Another Example:

All horses are the same color.

Proof: We do induction on the size of sets of horses of the same color.

• Basis step: The assertion is obviously true for all sets of 0 horses (and all sets with 1 horse).

• Induction step: The induction hypothesis becomes 'Assume the assertion is true for all sets with n horses.'

Now show it must be true for all sets of n+1 horses.

But every set of n+1 horses has an overlap of horses which are the same color.

Hence the set of n+1 horses must have the same color.

Therefore, all horses have the same color.

What's wrong?

The Second Principle of Mathematical Induction

The rule of inference becomes:

H1:
$$P(0)$$

H2: $P(0)$ $P(1)$... $P(n)$ $P(n+1)$
 $xP(x)$

The two rules are equivalent but sometimes the second is easier to apply. See your text for the classic examples.