Section 2.4 Sequences and Summations

Definition: A sequence is a function from a subset of the natural numbers (usually of the form $\{0,1,2, \ldots\}$ to a set S.

Note: the sets

$$
\{0,1,2,3, \ldots, k\}
$$

and

$$
\{1,2,3,4, \ldots, k\}
$$

are called initial segments of N .
Notation: if f is a function from $\{0,1,2, \ldots\}$ to S we usually denote $f(i)$ by a_{i} and we write

$$
\left\{\mathrm{a}_{0}, \mathrm{a}_{1}, \mathrm{a}_{2}, \mathrm{a}_{3}, \ldots\right\}=\left\{a_{i}\right\}_{i=0}^{k}=\left\{a_{i}\right\}_{0}^{k}
$$

where k is the upper limit (usually ∞).

Examples:

Using zero-origin indexing, if $f(i)=1 /(i+1)$. then the sequence

$$
f=\{1,1 / 2,1 / 3,1 / 4, \ldots\}=\left\{a_{0}, a_{1}, a_{2}, a_{3}, \ldots\right\}
$$

Using one-origin indexing the sequence f becomes

$$
\{1 / 2,1 / 3, \ldots\}=\left\{a_{1}, a_{2}, a_{3}, \ldots\right\}
$$

Summation Notation

Given a sequence $\left\{a_{i}\right\}_{0}^{k}$ we can add together a subset of the sequence by using the summation and function notation

$$
a_{g(m)}+a_{g(m+1)}+\ldots+a_{g(n)}=\sum_{j=m}^{n} a_{g(j)}
$$

or more generally

$$
\sum_{j \in S} a_{j}
$$

Examples:

$$
\begin{gathered}
r^{0}+r^{1}+r^{2}+r^{3}+\ldots+r^{n}=\sum_{0}^{n} r^{j} \\
1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\ldots=\sum_{1}^{\infty} \frac{1}{i} \\
a_{2 m}+a_{2(m+1)}+\ldots+a_{2(n)}=\sum_{j=m}^{n} a_{2 j}
\end{gathered}
$$

If $S=\{2,5,7,10\}$ then $\sum_{j \in S} a_{j}=a_{2}+a_{5}+\mathrm{a}_{7}+\mathrm{a}_{10}$
Similarly for the product notation:

$$
\prod_{j=m}^{n} a_{j}=a_{m} a_{m+1} \ldots a_{n}
$$

Definition: A geometric progression is a sequence of the form

$$
a, a r, a r^{2}, a r^{3}, a r^{4}, \ldots
$$

Your book has a proof that

$$
\sum_{i=0}^{n} r^{i}=\frac{r^{n+1}-1}{r-1} \text { if } r \neq 1
$$

(you can figure out what it is if $r=1$).
You should also be able to determine the sum

- if the index starts at k vs. 0
- if the index ends at something other than n (e.g., n $1, \mathrm{n}+1$, etc.).

Cardinality

Definition: The cardinality of a set A is equal to the cardinality of a set B, denoted $|A|=|B|$, if there exists a bijection from A to B .

Definition: If a set has the same cardinality as a subset of the natural numbers N , then the set is called countable.

If $|\mathrm{A}|=|\mathrm{N}|$, the set A is countably infinite.
The (transfinite) cardinal number of the set N is

$$
\text { aleph null }=\aleph_{0} \text {. }
$$

If a set is not countable we say it is uncountable.

Examples:

The following sets are uncountable (we show later)

- The real numbers in $[0,1]$
- $\mathrm{P}(\mathrm{N})$, the power set of N

Note: With infinite sets proper subsets can have the same cardinality. This cannot happen with finite sets.

Countability carries with it the implication that there is a listing of the elements of the set.

Definition: $|\mathrm{A}| \leq|\mathrm{B}|$ if there is an injection from A to B.

Note: as you would hope,

Theorem: If $|\mathrm{A}| \leq|\mathrm{B}|$ and $|\mathrm{B}| \leq|\mathrm{A}|$ then $|\mathrm{A}|=|\mathrm{B}|$.
This implies

- if there is an injection from A to B
- if there is an injection from B to A
then
- there must be a bijection from A to B

This is difficult to prove but is an example of demonstrating existence without construction.

It is often easier to build the injections and then conclude the bijection exists.

Example:

Theorem: If A is a subset of B then $|A| \leq|B|$.
Proof: the function $\mathrm{f}(\mathrm{x})=\mathrm{x}$ is an injection from A to B .

Example:

$$
|\{0,2,5\}| \leq \aleph_{0}
$$

The injection $\mathrm{f}:\{0,2,4\} \rightarrow \mathrm{N}$ defined by $\mathrm{f}(\mathrm{x})=\mathrm{x}$ is shown below:

Some Countably Infinite Sets

- The set of even integers E (0 is considered even) is countably infinite. Note that E is a proper subset of N !

Proof: Let $\mathrm{f}(\mathrm{x})=2 \mathrm{x}$. Then f is a bijection from N to E

- Z^{+}, the set of positive integers is countably infinite.
- The set of positive rational numbers Q^{+}is countably infinite.

Proof: $\mathrm{Z}+$ is a subset of Q^{+}so $\left|\mathrm{Z}^{+}\right|=\aleph_{0} \leq\left|\mathrm{Q}^{+}\right|$.
Now we have to show that $\left|\mathrm{Q}^{+}\right| \leq \mathcal{N}_{0}$.
To do this we show that the positive rational numbers with repetitions, Q_{R}, is countably infinite.

Then, since Q^{+}is a subset of Q_{R}, it follows that $\left|\mathrm{Q}^{+}\right| \leq$ \aleph_{0} and hence $\left|\mathrm{Q}^{+}\right|=\aleph_{0}$.

The position on the path (listing) indicates the image of the bijective function f from N to Q_{R} :
$f(0)=1 / 1, f(1)=1 / 2, f(2)=2 / 1, f(3)=3 / 1$, and so forth.
Every rational number appears on the list at least once, some many times (repetitions).

Hence, $|\mathrm{N}|=\left|\mathrm{Q}_{\mathrm{R}}\right|=\aleph_{0}$.
Q. E. D.

- The set of all rational numbers Q , positive and negative, is countably infinite.
- The set of (finite length) strings S over a finite alphabet A is countably infinite.

To show this we assume that

- A is nonvoid
- There is an "alphabetical" ordering of the symbols in A

Proof: List the strings in lexicographic order:

- all the strings of zero length,
- then all the strings of length 1 in alphabetical order,
- then all the strings of length 2 in alphabetical order, etc.

This implies a bijection from N to the list of strings and hence it is a countably infinite set.

For example: Let $\mathrm{A}=\{\mathrm{a}, \mathrm{b}, \mathrm{c}\}$.
Then the lexicographic ordering of A is
$\{\lambda, a, b, c, a a, a b, a c, b a, b b, b c, c a, c b, c c, a a a, ~ a a b$, aac, aba, $\ldots.\}=\{f(0), f(1), f(2), f(3), f(4), \ldots\}$

- The set of all C programs is countable.

Proof: Let S be the set of legitimate characters which can appear in a C program.

- A C compiler will determine if an input program is a syntactically correct C program (the program doesn't have to do anything useful).
- Use the lexicographic ordering of S and feed the strings into the compiler.
- If the compiler says YES, this is a syntactically correct C program, we add the program to the list.
- Else we move on to the next string.

In this way we construct a list or an implied bijection from N to the set of C programs.

Hence, the set of C programs is countable.
Q. E. D.

Cantor Diagonalization

- An important technique used to construct an object which is not a member of a countable set of objects with (possibly) infinite descriptions

Theorem: The set of real numbers between 0 and 1 is uncountable.

Proof: We assume that it is countable and derive a contradiction.

If it is countable we can list them (i.e., there is a bijection from a subset of N to the set).

We show that no matter what list you produce we can construct a real number between 0 and 1 which is not in the list.

Hence, there cannot exist a list and therefore the set is not countable

It's actually much bigger than countable. It is said to have the cardinality of the continuum, \mathbf{c}.

Represent each real number in the list using its decimal expansion.

$$
\text { e.g., } \begin{aligned}
1 / 3 & =.3333333 \ldots \ldots . . \\
1 / 2 & =.5000000 \ldots \ldots . \\
& =.4999999 \ldots \ldots .
\end{aligned}
$$

If there is more than one expansion for a number, it doesn't matter as long as our construction takes this into account.

THE LIST....

$$
\begin{aligned}
& \mathrm{r}_{1}=. \mathrm{d}_{11} \mathrm{~d}_{12} \mathrm{~d}_{13} \mathrm{~d}_{14} \mathrm{~d}_{15} \mathrm{~d}_{16} \cdots \cdot \\
& \mathrm{r}_{2}=. \mathrm{d}_{21} \mathrm{~d}_{22} \mathrm{~d}_{23} \mathrm{~d}_{24} \mathrm{~d}_{25} \mathrm{~d}_{26} \cdots \\
& \mathrm{r}_{3}=. \mathrm{d}_{31} \mathrm{~d}_{32} \mathrm{~d}_{33} \mathrm{~d}_{34} \mathrm{~d}_{35} \mathrm{~d}_{36} \cdots
\end{aligned}
$$

Now construct the number $\mathrm{x}=. \mathrm{X}_{1} \mathrm{X}_{2} \mathrm{X}_{3} \mathrm{X}_{4} \mathrm{X}_{5} \mathrm{X}_{6} \mathrm{X}_{7} . .$.

$$
\begin{aligned}
& \mathrm{x}_{\mathrm{i}}=3 \text { if } \mathrm{d}_{\mathrm{ii}} \neq 3 \\
& \mathrm{x}_{\mathrm{i}}=4 \text { if } \mathrm{d}_{\mathrm{ii}}=3
\end{aligned}
$$

(Note: choosing 0 and 9 is not a good idea because of the non uniqueness of decimal expansions.)

Then x is not equal to any number in the list.
Hence, no such list can exist and hence the interval (0,1) is uncountable.
Q. E. D.

An extra goody:
Definition: a number x between 0 and 1 is computable if there is a C program which when given the input i , will produce the ith digit in the decimal expansion of x .

Example:

The number $1 / 3$ is computable.
The C program which always outputs the digit 3 , regardless if the input, computes the number.

Theorem: There is exists a number x between 0 and 1 which is not computable.

There does not exist a C program (or a program in any other language) which will compute it!

Why? Because there are more numbers between 0 and 1 than there are C programs to compute them.
(in fact there are \boldsymbol{c} such numbers!)
Our second example of the nonexistence of programs to compute things!

