Section 2.1
 Sets

A set is a collection or group of objects or elements or members. (Cantor 1895)

- A set is said to contain its elements.
- There must be an underlying universal set U , either specifically stated or understood.

Notation:

- list the elements between braces:

$$
S=\{a, b, c, d\}=\{b, c, a, d, d\}
$$

(Note: listing an object more than once does not change the set. Ordering means nothing.)

- specification by predicates:

$$
\mathrm{S}=\{\mathrm{x} \mid P(\mathrm{x})\},
$$

S contains all the elements from U which make the predicate P true.

- brace notation with ellipses:

$$
S=\{\ldots,-3,-2,-1\}
$$

the negative integers.

Common Universal Sets

- $\mathrm{R}=$ reals
- $\mathrm{N}=$ natural numbers $=\{0,1,2,3, \ldots\}$, the counting numbers
- $\mathrm{Z}=$ all integers $=\{.,-3,-2,-1,0,1,2,3,4, \ldots\}$
- Z^{+}is the set of positive integers

Notation:

x is a member of S or x is an element of S :

$$
x \in S .
$$

x is not an element of S :

$$
x \notin S .
$$

Subsets

Definition: The set A is a subset of the set B, denoted A $\subseteq \mathrm{B}$, iff

$$
\forall x[x \in A \rightarrow x \in B]
$$

Definition: The void set, the null set, the empty set, denoted \varnothing, is the set with no members.

Note: the assertion $x \in \varnothing$ is always false. Hence

$$
\forall x[x \in \varnothing \rightarrow x \in B]
$$

is always true(vacuously). Therefore, \varnothing is a subset of every set.

Note: A set B is always a subset of itself.

Definition: If $\mathrm{A} \subseteq \mathrm{B}$ but $\mathrm{A} \neq \mathrm{B}$ the we say A is a proper subset of B , denoted $A \subset B$ (in some texts).

Definition: The set of all subset of a set A, denoted P(A), is called the power set of A.

Example: If $\mathrm{A}=\{\mathrm{a}, \mathrm{b}\}$ then

$$
\mathrm{P}(\mathrm{~A})=\{\varnothing,\{\mathrm{a}\},\{\mathrm{b}\},\{\mathrm{a}, \mathrm{~b}\}\}
$$

Definition: The number of (distinct) elements in A, denoted $|\mathrm{A}|$, is called the cardinality of A .

If the cardinality is a natural number (in N), then the set is called finite, else infinite.

Example:
$A=\{a, b\}$,

$$
\begin{gathered}
|\{\mathrm{a}, \mathrm{~b}\}|=2, \\
|\mathrm{P}(\{\mathrm{a}, \mathrm{~b}\})|=4 .
\end{gathered}
$$

A is finite and so is $\mathrm{P}(\mathrm{A})$.
Useful Fact: $|\mathrm{A}|=\mathrm{n}$ implies $|\mathrm{P}(\mathrm{A})|=2^{\mathrm{n}}$

N is infinite since $|\mathrm{N}|$ is not a natural number. It is called a transfinite cardinal number.

Note: Sets can be both members and subsets of other sets.

Example:
$A=\{\varnothing,\{\varnothing\}\}$.
A has two elements and hence four subsets:

$$
\varnothing,\{\varnothing\},\{\{\varnothing\}\} \cdot\{\varnothing,\{\varnothing\}\}
$$

Note that \varnothing is both a member of A and a subset of A!

Russell's paradox: Let S be the set of all sets which are not members of themselves. Is S a member of itself?

Another paradox: Henry is a barber who shaves all people who do not shave themselves. Does Henry shave himself?

Definition: The Cartesian product of A with B, denoted $\mathrm{A} \times \mathrm{B}$, is the set of ordered pairs $\{<\mathrm{a}, \mathrm{b}\rangle \mid a \in A \wedge b \in B\}$

$$
\text { Notation: } \underset{i=1}{\underset{\sim}{\times}} A_{i}=\left\{<a_{1}, a_{2}, \ldots, a_{n}>\mid a_{i} \in A_{i}\right\}
$$

Note: The Cartesian product of anything with \varnothing is \varnothing. (why?)

Example:

$\mathrm{A}=\{\mathrm{a}, \mathrm{b}\}, \mathrm{B}=\{1,2,3\}$
$\mathrm{AxB}=\{\langle\mathrm{a}, 1\rangle,\langle\mathrm{a}, 2\rangle,\langle\mathrm{a}, 3\rangle,\langle\mathrm{b}, 1\rangle,\langle\mathrm{b}, 2\rangle,\langle\mathrm{b}, 3\rangle\}$
What is BxA? AxBxA?

If $|\mathrm{A}|=\mathrm{m}$ and $|\mathrm{B}|=\mathrm{n}$, what is $|\mathrm{AxB}|$?

