

	Identitu Name				
	laentity	Name			
		Identity laws			
		Domination laws			
		Idempotent laws			
		Complementation law			
Γ		Commutative laws			
\square		Associative laws			

Identity	Name	
	Distributive laws	
	DeMorgan's laws	
	Absorption laws	
	Complement laws	

There are many ways to prove set identities

Today, we'll discuss four common methods:

- 1. Membership tables
- 2. Logical argument
- 3. Using set builder notation
- 4. Applying other known set identities

Membership tables allow us to write proofs like we did using truth tables!

The membership table for an expression has columns for sub-expressions and rows to indicate the ways in which an arbitrary element may or may not be included.

Example: A membership table for set intersection

Α	В	A ∩ B	
1	1	1	*
1	0	0	
0	1	0	
0	0	0	

An element is in $A \cap B$ iff it is in both A and B

Group work!

Problem 1: Prove DeMorgan's law for complement over intersection using a membership table.

Problem 2: Prove the complementation law using set builder notation.

