
Mathematical theorems are often stated in the 

form of an implication

Example: If x > y, where x and y are positive real 

numbers, then x2 > y2.

� ∀ x,y [(x > 0) ∧∧∧∧ (y > 0) ∧∧∧∧ (x > y) → (x2 > y2)]

� ∀ x,y P(x,y) → Q(x,y)

We will first discuss three applicable proof methods 

(Section 1.6):

� Direct proof

� Proof by contraposition

� Proof by contradiction

Direct proof

In a direct proof, we prove p → q by showing that if p is 

true, then q must necessarily be true

Example: Prove that if n is an odd integer, then n2 is 

an odd integer.

Proof:

� Assume that n is odd.  That is n = (2k + 1) for some integer k.

� Note that n2 = (2k+1)2 = (4k2 + 4k + 1)

� We can factor the above to get 2(2k2 + 2k) +  1

� Since the above quantity is one more than even number, we 

know that n2 is odd.  ☐



Direct proofs are not always the easiest way to 

prove a given conjecture.

In this case, we can try proof by contraposition

How does this work?

� Recall that p → q ≡ ¬q → ¬p

� Therefore, a proof of ¬q → ¬p is also a proof of p → q

Proof by contraposition is an indirect proof technique 

since we don’t prove p → q directly.

Let’s take a look at an example…

Prove: If n is an integer and 3n + 2 is odd, then 

n is odd.

First, attempt a direct proof:

� Assume that 3n + 2 is odd, thus 3n + 2 = 2k + 1 for some k

� Can solve to find that n = (2k – 1)/3

Now, try proof by contraposition:

� Assume n is even, so n = 2k for some k

� 3(2k) + 2 = 6k + 2 = 2(3k + 1)

� So, 3n + 2 is also even.

� Since we proved ¬“n is odd” → ¬“3n+2 is odd”, we can 

conclude that “3n + 2 is odd” → “n is odd” ☐

Where do we go from here?!?



Proof by contradiction

Given a conditional p → q, the only way to reject this 

claim is to prove that p ∧∧∧∧ ¬q is true.

In a proof by contradiction we:

1. Assume that p ∧∧∧∧ ¬q is true

2. Proceed with the proof

3. If this assumption leads us to a contradiction, we can 

conclude that p → q is true

Let’s revisit an earlier example…

Prove: If n is an integer and 3n + 2 is odd, then 

n is odd.

Proof:

� Assume that 3n + 2 is odd and n is even (i.e., n = 2k)

� 3n + 2 = 3(2k) + 2 = 6k + 2 = 2(3k + 1)

� The above statement tells us that 3n + 2 is even, which is a 

contradiction of our assumption that 3n + 2 is odd.

� Therefore, we have shown that if 3n + 2 is odd, then n is also 

odd.  ☐

We can also use proof by contradiction in cases where 

were the theorem to be proved is not of the form p →

q



Prove: At least 10 of any 64 days fall on the 

same day of the week

Proof:

� Let p ≡ “At least 10 of any 64 days fall on the same day of 

the week”

� Assume ¬p is true, that is “At most 9 of any 64 days fall on 

the same day of the week”

� Since there are 7 days in a week, at at most 7×9 = 63 days 

can be chosen

� This is a contradiction of the fact that we chose 64 days

� Therefore, we can conclude that at least 10 of any 64 days 

fall on the same day of the week.  ☐

This proof is an example of the pigeonhole principle, 
which we will study during our combinatorics unit.

Group work!

Problem: Prove the following claims

� Use a direct proof to show that the square of an even 

number is an even number.

� Show that if m + n and n + p are even integers, then the 

sum m + p is also an even integer.

� Use proof by contraposition to show that if n is an integer 

and n3 + 5 is odd, then n is even.



Writing proofs can be an error-prone process

Watch out for the following types of errors:

� Arithmetic and algebra

� e.g., division by zero, incorrect factoring, etc.

� Circular reasoning

� This occurs when one or more steps in the proof require that 

the theorem being proved is true

� Incorrect logic

� e.g., assuming that p → q and ¬p gives you ¬q

Recap

� There are multiple ways to construct valid proofs.  
Today we learned about:
� Direct proofs

� Proof by contraposition

� Proof by contradiction

� Now, on to: 
� More proof techniques

� Strategies for proof construction



Sadly, not all theorems are of the form p → q

Sometimes, we need to prove a theorem of the form:

p1 V p2 V … V pn → q

Note: p1 V p2 V … V pn → q

≡ ¬(p1 V p2 V … V pn) V q

≡ (¬p1 ∧∧∧∧ ¬p2 ∧∧∧∧ … ∧∧∧∧ ¬pn) V q

≡ (¬p1 V q) ∧∧∧∧ (¬p2 V q) ∧∧∧∧ … ∧∧∧∧(¬pn V q)

≡ (p1 → q) ∧∧∧∧ (p2 →q) ∧∧∧∧ … ∧∧∧∧ (pn → q) 

So, we might need to examine multiple cases!

Distributive law

Sometimes, it makes sense to exhaustively 

search all possibilities

Not surprisingly, this is called exhaustive proof

When do we use this?  When there are a relatively 

small number of possibilities to examine.

Good example: Show that (n+1)2 ≥ n3 for positive 

integers less than or equal to 4.

Bad example: Show that n4 > 2n2 for all integers 

between 3 and 100.



Prove that n2 + 1 ≥ 2n where n is a positive 

integer with 1 ≤ n ≤ 4

Proof:

� n = 1: (1)2 + 1 = 2,  2(1) = 2, and 2 ≥ 2

� n = 2: (2)2 + 1 = 5,  2(2) = 4, and 5 ≥ 4

� n = 3: (3)2 + 1 = 10,  2(3) = 6, and 10 ≥ 6

� n = 4: (4)2 + 1 = 17,  2(4) = 8, and 17 ≥ 8

Since we have verified each case, we have shown that n2

+ 1 ≥ 2n where n is a positive integer with 1 ≤ n ≤ 4.  ☐

With only 4 cases to consider, exhaustive proof 
was a good choice!

Sometimes, exhaustive proof isn’t an option, but we 

still need to examine multiple possibilities

Example: Prove the triangle inequality.  That is, if x 

and y are real numbers, then |x| + |y| ≥ |x + y|.

Clearly, we can’t use exhaustive proof here since 

there are infinitely many real numbers to consider.

We also can’t use a simple direct proof either, since 

our proof depends on the signs of x and y.



Example: Prove that if x and y are real numbers, then 

|x| + |y| ≥ |x + y|.

Making mistakes when using proof by cases is all 

too easy!

Mistake 1: Proof by “a few cases” is not equivalent to 

proof by cases.

Example: Prove that all odd numbers are prime.

“Proof:”

� Case (i):  The number 1 is both odd and prime

� Case (ii):  The number 3 is both odd and prime

� Case (iii):  The number 5 is both odd and prime

� Case (iv):  The number 7 is both odd and prime

Thus, we have shown that odd numbers are prime.  ☐

This is a “there exists” proof, 
not a “for all” proof!



Making mistakes when using proof by cases is all 

too easy!

Mistake 2: Leaving out critical cases.

Example: Prove that x2 > 0 for all integers x

“Proof:”

� Case (i):  Assume that x < 0. Since the product of two 

negative numbers is always positive, x2 > 0.

� Case  (ii):  Assume that x > 0.  Since the product of two 

positive numbers is always positive, x2 > 0.

Since we have proven the claim for all cases, we can 

conclude that x2 > 0 for all integers x.  ☐

What about the case in which x = 0?

Sometimes we need to prove the existence of a 

given element

There are two ways to do this

The constructive approach

The non-constructive approach

Prove the claim by showing how to 
construct an example

Show that it is possible for such an 
element to exist



A constructive existence proof

Prove: Show that  there is a positive integer that can 

be written as the sum of cubes of positive integers in 

two different ways.

Proof: 1729 = 103 + 93 = 123 + 13 ☐

Obviously, the claim has been proven because we have 

shown that a specific instance of the claim is valid. 

Constructive existence proofs are really just 
instances of “existential generalization.”

A non-constructive existence proof

Prove: Show that there exists two irrational numbers x 

and y such that xy is rational.

Proof:

� We know that √2 is irrational, so let x = √2

� If √2√2 is rational, then we are done!  (i.e., x = y = √2)

� If √2√2 is irrational, then let x = √2√2 and y = √2, both of which 

are irrational

� Now, xy = (√2√2)√2 = √22 = 2, which is rational (i.e., 2 = 2/1)   ☐

Note: We don’t know whether √2√2 is rational or 

irrational.  However, in either case, we can use it to 

construct a rational number.



Sometimes, existence is not enough and we 

need to prove uniqueness

This process has two steps:

1. Provide an existence proof

2. Show that any other solution to the problem is equivalent to 

the solution generated in step 1

Example: Prove that if a and b are real numbers, then 

there exists a unique real number r such that ar + b = 0

Proof:

� Note that r = -b/a is a solution to this equality since 

a(-b/a) + b = -b + b = 0.

� Assume that as + b = 0, s ≠ r

� Then as = -b, so s = -b/a = r, which is a contradiction    ☐

Existence

Uniqueness

The scientific process is not always 

straightforward…

Conjecture
Gather evidence, 

prove lemmas

Prove 

theorem



Proof strategies can help preserve your sanity

Proof strategies help us…

Organize our problem 

solving approach

Effectively use all of the 

tools at our disposal

Develop a coherent plan 

of attack

Types of “strategery”

Today we’ll discuss four types of strategy:

1. Forward reasoning

2. Backward reasoning

3. Searching for counterexamples

4. Adapting existing proofs



We’ve been doing forward reasoning all along!

In the forward reasoning strategy, we begin with our 

premises and axioms and reason towards our goal

Potential steps in the forward reasoning process:

1. Try a simple direct proof

� Could be of form p → q

� Could be of form (p1 V p2 V … V pn) → q

2. If direct proof fails, try proof by contraposition

3. If all else fails, a proof by contradiction might work

Sometimes forward reasoning doesn’t work

In these cases, it is often helpful to reason backwards, 

starting with the goal that we want to prove.

Example: Prove that given two distinct positive real 

numbers x and y, the arithmetic mean of x and y is 

always greater than the geometric mean of x and y.

Sanity check: Let x=8 and y=4.  (8+4)/2 = 6.  √(8×4) = 

√(32) ≅ 5.66.  6 > 5.66 ☐

(x + y)/2
√(xy)



Prove that (x+y)/2 > √(xy) for all distinct pairs 

of positive real numbers x and y.

Proof:

(x + y)/2 > √(xy)

(x + y)2/4 > xy

(x + y)2 > 4xy

x2 + 2xy + y2 > 4xy

x2 - 2xy + y2 > 0

(x – y)2 > 0

Since (x – y)2 > 0 whenever x ≠ y, the final inequality is 

true.  Since all of these inequalities are the same, it 

follows that (x + y)/2 > √(xy).   ☐

Other times, searching for a counterexample is helpful

Proof by counterexample is helpful if:

� Proof attempts repeatedly fail

� The conjecture to be proven looks “funny”

Example: Prove that every positive integer is the sum of 

two squares.

Counterexample:

3 is not the sum of two squares, so the claim is false.  ☐

This seems strange to me, since other factorizations 
(e.g., prime factorizations) can be complex.



In some situations, we can “cheat” and modify 

existing proofs!

Observation: Often times, proofs of related facts have 

a similar structure.  

If you ever notice this, try to reuse an existing proof to 

make proving a new theorem easier!

Example: Prove that for any two distinct positive real 

numbers that 2xy/(x+y) < √(xy).

This is called the harmonic mean of x and y

Can we reuse our 

proof about 

geometric  means?

Prove that for any two distinct positive real 

numbers that 2xy/(x+y) < √(xy)



These four proof strategies are just a start!

When trying to prove a new conjecture, a good “meta 

strategy” is to:

1. If possible, try to reuse an existing proof

2. If the conjecture looks fishy, check for a counterexample

3. Attempt a “real” proof

a) Either apply the forward reasoning strategy

b) Or, apply the backward reasoning strategy

Unfortunately, not every proof can be solved using this 

nice little meta strategy…

In fact, there are many, many proof strategies out 
there, and NONE of them can be guaranteed to find a 

proof!!!

Group work!

Problem 1: Prove that there exists a positive integer 

that is equal to the sum of all positive integers not 

exceeding it.  Is your proof constructive or non-

constructive?

Problem 2: Prove that there is no positive integer n 

such that n2 + n3 = 100.

Problem 3: Use proof by cases to show that min(a, 

min(b,c) = min(min(a,b),c) whenever a, b, and c are 

real numbers.



That’s it for proofs!

Well, not really…

Throughout the remainder of this course, we will 

repeatedly use the proof skills that we’ve acquired

Our existing proof techniques (as well as a few more 

that we’ll pick up along the way) will help us gain a 

deeper understanding of the mathematical 

foundations of other sub-areas of computer science

A retrospective

Formal proof, 

equivalence, and 

derivation

Representation

Informal proof, 

proof strategies



Final Thoughts

� Proving theorems is not always straightforward

� Having several proof strategies at your disposal will 

make a huge difference in your success rate!

� We are “done” with our intro to logic and proofs

EXTRA SLIDES



Example: Prove that if x and y are real numbers, then 

|x| + |y| ≥ |x + y|.

Proof:

Case (i): Assume that x and y are both non-negative.  In this case |x| + 

|y| = x + y = |x + y|.

Case (ii): Assume that x and y are both negative.  In this case |x| + |y|

= -x + -y = -(x + y) = |x + y|.

Case (iii):

� Assume that x ≥ 0 and y < 0.  

� Note that |x| + |y| = x + (-y).  

� If x > |y|, then |x + y| = x + y.  Since –y > y, we have that x + -y > x + y, so |x| + 

|y| > |x + y|.  

� If x < |y|, then |x + y| = -(x + y) = -x + (-y).  Since –x < x, we have that x + (-y) > -x 

+ (-y), so |x| + |y| > |x + y|.

Case (iv): Same as case (iii).

Since we have proven the claim in all possible cases, we have proven 

that |x| + |y| ≥ |x + y| for all real numbers x and y.  ☐

Prove that for any two distinct positive real 

numbers that 2xy/(x+y) < √(xy)

Proof:  Note that if we multiply the inequality

2xy/(x+y) < √(xy)

by the quantity (x+y)/(2√(xy)) on both sides, we obtain 

the inequality

√(xy) < (x+y)/2

Since we proved earlier in lecture that √(xy) < (x+y)/2 

for any distinct positive real numbers, and this 

inequality is equivalent to 2xy/(x+y) < √(xy), we 

have proven our claim.    ☐


