Binary relations establish a relationship between elements of two sets

Definition: Let A and B be two sets. A binary relation from A to B is a subset of $A \times B$.

In other words, a binary relation R is a set of ordered pairs $(a_i,\,b_i)$ where $a_i\in A$ and $b_i\in B.$

Notation: We say that

- a R b if $(a,b) \in R$
- a $\not\!\!R$ b if (a,b) \notin R

Definition: A relation on the set A is a relation from A to A. That is, a relation on the set A is a subset of $A \times A$.

Equivalence classes are either equal or disjoint

Theorem: If R is an equivalence relation on some set A, then the following three statements are equivalent: (i) a R b, (ii) [a] = [b], and (iii) [a] \cap [b] $\neq \emptyset$.

Proof:

To prove this, we'll prove that (i) \rightarrow (ii), (ii) \rightarrow (iii), and (iii) \rightarrow (i)

- $\blacksquare(i) \to (ii)$
 - Assume that a R b
 - To prove that [a] = [b], we will show that $[a] \subseteq [b]$ and $[b] \subseteq [a]$
 - Suppose that $c \in [a]$, then a R c
 - Since a R b and R is symmetric, we have that b R a
 - Since R is transitive, we have that b R a and a R c, so b R c
 - This means that $c \in [b]$ and thus that $[a] \subseteq [b]$
 - The proof that [b] ⊆ [a] is identical

