Binary relations establish a relationship between elements of two sets

Definition: Let A and B be two sets. A binary relation from A to B is a subset of $A \times B$.

In other words, a binary relation R is a set of ordered pairs $\left(a_{i}, b_{i}\right)$ where $a_{i} \in A$ and $b_{i} \in B$.

Notation: We say that

- $a R b$ if $(a, b) \in R$
- $a \mathbb{R} b$ if $(a, b) \notin R$

Definition: A relation on the set A is a relation from A to A . That is, a relation on the set A is a subset of $A \times A$.

What is an equivalence relation?

Informally: An equivalence relation partitions elements of a set into classes of "equivalent" objects.

Formally: A relation on a set A is called an equivalence relation if it is reflexive, symmetric, and transitive.

Definition: Two elements a and b that are related by some equivalence relation are called equivalent. We denote this by $\mathrm{a} \sim \mathrm{b}$ (or $\mathrm{a} \sim_{\mathrm{R}} \mathrm{b}$).

Example: Comparing Magnitudes

Example: Let R be the relation on the set of integers such that $\mathrm{a} R \mathrm{~b}$ if and only if $\mathrm{a}=\mathrm{b}$ or $\mathrm{a}=-\mathrm{b}$. Is R an equivalence relation?

Intuition says yes, so let's verify:

- Is R reflexive?
- Is R symettric?
- Is R transitive?

Conclusion: Since R is symmetric, reflexive, and transitive, we know that R is an equivalence relation.

Congruence Modulo m

Example: Let m be a positive integer greater than 1 . Show that $R=\{(a, b) \mid a \equiv b(\bmod m)\}$ is an equivalence relation.

Solution:

- Recall: $\mathrm{a} \equiv \mathrm{b}(\bmod \mathrm{m}) \leftrightarrow \mathrm{m} \mid(\mathrm{a}-\mathrm{b})$
- Is R reflexive?
$\kappa \quad a \equiv a(\bmod m) \leftrightarrow m \mid(a-a)$
$\kappa \mathrm{m} \mid 0$ since $0=0 \times \mathrm{m}$
\star Yes, R is reflexive
- Is R symmetric?
$\kappa \quad$ If $a \equiv b(\bmod m)$, then $m \mid(a-b)$, so $(a-b)=k m$ for some k
$\kappa \quad$ Note that $(b-a)=-k m$
$\pi \quad$ So $b \equiv a(\bmod m)$ and R is symmetric
- Is R transitive?

К $\quad \mathrm{a} \equiv \mathrm{b}(\bmod \mathrm{m})$ means that $(\mathrm{a}-\mathrm{b})=\mathrm{km}$, so $\mathrm{a}=k m+\mathrm{b}$
$\pi \quad b \equiv c(\bmod m)$ means that $(b-c)=j m$, so $c=b-j m$
$\Sigma \quad$ Note that $a-c=(k m+b)-(b-j m)=k m+j m=(k+j) m$
$\pi \quad$ Since $m \mid(a-c)$, $a \equiv c(\bmod m)$, and R is transitive

- Conclusion: R is an equivalence relation

What about the "divides" relation?

Example: Is the "divides" relation on positive integers an equivalence relation?

Solution:

- Reflexive?
- Symmetric?
- Transitive?
- Conclusion: Since the "divides" relation is not symmetric, it cannot be an equivalence relation.

String Length

Example: Suppose that R is the relation on the set of strings of English letters such that a R b iff $l(a)=l(b)$, where $l(x)$ is the length of string x. Is R an equivalence relation?

Solution:

- Reflexive?
- Symmetric?
- Transitive?

Rc.

- Conclusion: R is an equivalence relation

Magnitude of differences

Example: Let R be the relation on the set of real numbers such that $x R y$ iff x and y are real numbers that differ by less than 1 , i.e., $|x-y|<1$. Is R an equivalence relation?

Solution:

- First, a few test cases:

к	1.1 R 2.0?	Yes, since
К	1.1 R 3.0?	No, since
к	2.0 R 2.5?	Yes, since

- Reflexive?
- Symmetric?
- Transitive?
- Conclusion: Since R is not transitive, it cannot be an equivalence relation.

What is an equivalence class?

Definition: Let R be an equivalence relation on a set A . The set of all elements that are related to some element a is called the equivalence class of a.

Note: We denote the equivalence class of element a under relation R as $[a]_{R}$. If only one relation is being considered, we can drop the subscript and denote the equivalence class of a as [a].

Example: What are the equivalence classes of 0 and 1 under congruence modulo 4?

- [0] contains all integers x such that $x \equiv 0(\bmod 4)$
- [1] contains all integers x such that $x \equiv 1(\bmod 4)$
- So $[0]=\{\ldots,-8,-4,0,4,8, \ldots\}$
- And [1] $=\{\ldots,-7,-3,1,5,9, \ldots\}$

Variable names in C

Example: Some compilers for the C programming language truncate variable names after the first 31 characters. As a result, any two variable names that agree in the first 31 characters are considered to be identical. What are the equivalence classes of the variable names "Number_of_tropical_storms", "Number_of_named_tropical_storms", and "Number_of_named_tropical_storms_in_the_Atlantic_in_2005"?

Solution:

- [Number_of_tropical_storms] =
- [Number_of_named_tropical_storms] =
- [Number_of_named_tropical_storms_in_the_Atlantic_in_2005] =

An equivalence relation divides a set into disjoint subsets

(Contrived) Example: At State University, a student can either major in computer science or art history, but not both. Let R be the relation defined such that $a R b$ if a and b are in the same major.

Observations:

- R is an equivalence relation (Why?)
- R breaks the set S of all students into two subsets:
$\kappa \quad C=$ Students majoring in computer science
$\kappa \quad A=$ Students majoring in art history
- No student in C is also in A
- No student in A is also in C
- C and A are equivalence classes of S

Equivalence classes are either equal or disjoint

Theorem: If R is an equivalence relation on some set A, then the following three statements are equivalent: (i) a R b, (ii) [a] = [b], and (iii) $[\mathrm{a}] \cap[\mathrm{b}] \neq \emptyset$.

Proof:

■To prove this, we'll prove that (i) \rightarrow (ii), (ii) \rightarrow (iii), and (iii) \rightarrow (i)
■(i) \rightarrow (ii)

- Assume that a R b
- To prove that $[\mathrm{a}]=[\mathrm{b}]$, we will show that $[\mathrm{a}] \subseteq[\mathrm{b}]$ and $[\mathrm{b}] \subseteq[\mathrm{a}]$
- Suppose that $c \in[a]$, then a R c
- Since $a R b$ and R is symmetric, we have that $b R a$
- Since R is transitive, we have that $b R$ and $a R c$, so $b R c$
- This means that $c \in[b]$ and thus that $[a] \subseteq[b]$
- The proof that $[\mathrm{b}] \subseteq[\mathrm{a}]$ is identical

Equivalence classes are either equal or disjoint

Theorem: If R is an equivalence relation on some set A, then the following three statements are equivalent: (i) a R b, (ii) [a] = [b], and (iii) $[\mathrm{a}] \cap[\mathrm{b}] \neq \emptyset$.

Proof (cont.):
\square (ii) \rightarrow (iii)

- Assume that [a] = [b]
- [a] $\cap[b]$ is non-empty since $a \in[a]$

■(iii) \rightarrow (i)

- Assume that $[\mathrm{a}] \cap[\mathrm{b}] \neq \varnothing$
- This means that there exists some element $c \in[a] \cap[b]$
- So, a R c and b R c
- By symmetry, we have that c R b
- By transitivity, we have that a R c and c R b means a Rb

■Since (i) \rightarrow (ii), (ii) \rightarrow (iii), and (iii) \rightarrow (i), all three statements are equivalent.

Equivalence classes partition a set

Definition: A partition of a set S is a collection of disjoint subsets that have S as their union.

Observation: The equivalence classes of a set partition that set.

- $U_{a \in A}[a]=A$ since each $a \in A$ is in its own equivalence class
- By our theorem, we know that either [a] = [b], or [a] $\cap[b]=\varnothing$

The integers (mod m), redux

Example: What are the sets in the partition produced by the equivalence relation equivalence mod 4 ?

Solution:

- [0] $=\{\ldots,-8,-4,0,4,8, \ldots\}$
- [1] $=\{\ldots,-7,-3,1,5,9, \ldots\}$
- $[2]=\{\ldots,-6,-2,2,6,10, \ldots\}$
- $[3]=\{\ldots,-5,-1,3,7,11, \ldots\}$
- Note that each integer is in one of these sets, and each set is disjoint. Thus, these equivalence classes partition the set Z.

Conversely, a partition of a set describes an equivalence relation

Example: List the ordered pairs in the equivalence relation R produced by the partition $A=\{1,2,3\}, B=\{4,5\}, C=\{6\}$ of $S=\{1,2,3,4,5,6\}$.

Solution:

■From $A=\{1,2,3\}$ we have

- $(1,1),(1,2),(1,3) \in R$
- $(2,1),(2,2),(2,3) \in R$
- $(3,1),(3,2),(3,3) \in R$

■From $B=\{4,5\}$ we have

- $(4,4),(4,5) \in R$
- $(5,4),(5,5) \in R$

■From $C=\{6\}$ we have

- $(6,6) \in R$

R

Group Work!

Problem 1: Which of the following relations on $\{0,1,2,3\}$ are equivalence relations? Which properties are lacking from those relations that are not equivalence relations?

1. $\{(0,0),(1,1),(2,2),(3,3)\}$
2. $\{(0,0),(0,2),(2,0),(2,2),(2,3),(3,2),(3,3)\}$

Problem 2: Which of these collections of sets are partitions of the set $S=\{1,2,3,4,5,6\}$?

1. $\{1,2\},\{2,3,4\},\{4,5,6\}$
2. $\{2,4,6\},\{1,3,5\}$
3. $\{1,4,5\},\{2,6\}$
