Today

Relations

- Binary relations and properties
- Relationship to functions
n -ary relations
- Definitions

Binary relations establish a relationship between elements of two sets

Definition: Let A and B be two sets. A binary relation from A to B is a subset of $A \times B$.

In other words, a binary relation R is a set of ordered pairs $\left(a_{i}, b_{i}\right)$ where $a_{i} \in A$ and $b_{i} \in B$.

Notation: We say that

- aR b if $(a, b) \in R$
- a \mathbb{R} b if $(a, b) \notin R$

Example: Course Enrollments

Let's say that Alice and Bob are taking CS 441. Alice is also taking Math 336. Furthermore, Charlie is taking Art 212 and Business 444. Define a relation R that represents the relationship between people and classes.

Solution:

- Let the set P denote people, so $P=\{$ Alice, Bob, Charlie $\}$
- Let the set C denote classes, so $C=\{C S ~ 441$, Math 336, Art 212, Business 444)
- By definition $R \subseteq P \times C$
- From the above statement, we know that
$\kappa \quad$ (Alice, CS 441) $\in R$
$\kappa \quad$ (Bob, CS 441) $\in R$
$\kappa \quad$ (Alice, Math 336) $\in R$
$\kappa \quad$ (Charlie, Art 212) $\in R$
$\kappa \quad($ Charlie, Business 444) $\in R$
- So, $R=\{$ (Alice, CS 441), (Bob, CS 441), (Alice, Math 336), (Charlie, Art 212), (Charlie, Business 444) $\}$

A relation can also be represented as a graph

Let's say that Alice and Bob are taking CS 441. Alice is also taking Math 336. Furthermore, Charlie is taking Art 212 and Business 444. Define a relation R that represents the relationship between people and classes.

$$
\text { (Alice, CS 441) } \in R
$$

A relation can also be represented as a table

Let's say that Alice and Bob are taking CS 441. Alice is also taking Math 336. Furthermore, Charlie is taking Art 212 and Business 444. Define a relation R that represents the relationship between people and classes.

Name of the relation
Elements of C (i.e., courses)

Wait, doesn't this mean that relations are the same as functions?

Not quite... Recall the following definition from Lecture \#9.

Definition: Let A and B be nonempty sets. A function, f , is an assignment of exactly one element of set B to each element of set A.

This would mean that, e.g., a person only be enrolled in one course!

Reconciling this with our definition of a relation, we see that

1. Every function is also a relation
2. Not every relation is a function

Let's see some quick examples...

Short and sweet...

1. Consider $f: S \rightarrow G$

- Clearly a function
- Can also be represented as the relation $R=\{($ Anna, C), (Brian, A), (Christine A) $\}$

1. Consider the set $R=\{(A, 1),(A, 2)\}$

- Clearly a relation
- Cannot be represented as a function!

We can also define binary relations on a single set

Definition: A relation on the set A is a relation from A to A. That is, a relation on the set A is a subset of $A \times A$.

Example: Let A be the set $\{1,2,3,4\}$. Which ordered pairs are in the relation $R=\{(a, b) \mid$ a divides $b\}$?

Solution:

- 1 divides everything
- 2 divides itself and 4
- 3 divides itself
- 4 divides itself
- So, $R=\{(1,1),(1,2),(1,3),(1,4),(2,2),(2,4),(3,3),(4,4)\}$

Representing the last example as a graph...

Example: Let A be the set $\{1,2,3,4\}$. Which ordered pairs are in the relation $R=\{(a, b) \mid$ a divides $b\}$?

Tell me what you know...

Question: Which of the following relations contain each of the
pairs (1,1), (1,2), (2,1), (1,-1), and (2,2)?

- $R_{1}=\{(a, b) \mid a \leq b\}$
- $R_{2}=\{(a, b) \mid a>b\} \quad$ These are all relations
- $R_{3}=\{(a, b) \mid a=b$ or $a=-b\}$
- $R_{4}=\{(a, b) \mid a=b\}$
- $R_{5}=\{(a, b) \mid a=b+1\}$
- $R_{6}=\{(a, b) \mid a+b \leq 3\}$

Answer:

	$(1,1)$	$(1,2)$	$(2,1)$	$(1,-1)$	$(2,2)$
R_{1}					
R_{2}					
R_{3}					
R_{4}					
R_{5}					
R_{6}					

Properties of Relations

Definition: A relation R on a set A is reflexive if $(a, a) \in R$ for every a \in A.

Note: Our "divides" relation on the set $A=\{1,2,3,4\}$ is reflexive.

Properties of Relations

Definition: A relation R on a set A is symmetric if $(b, a) \in R$ whenever $(a, b) \in R$ for every $a, b \in A$. If R is a relation in which $(a, b) \in R$ and $(b, a) \in R$ implies that $a=b$, we say that R is antisymmetric.

Mathematically:

- Symmetric: $\forall a \forall b((a, b) \in R \rightarrow(b, a) \in R)$
- Antisymmetric: $\forall a \forall b(((a, b) \in R \wedge(b, a) \in R) \rightarrow(a=b))$

Examples:

- Symmetric: $R=\{(1,1),(1,2),(2,1),(2,3),(3,2),(1,4),(4,1),(4,4)\}$
- Antisymmetric: $R=\{(1,1),(1,2),(1,3),(1,4),(2,4),(3,3),(4,4)\}$

Symmetric and Antisymmetric Relations

$R=\{(1,1),(1,2),(2,1),(2,3),(3,2)$, $(1,4),(4,1),(4,4)\}$

	1	2	3	4
1	X	X	X	X
2	X		X	
3	X	X		
4	X			

Symmetric relation

- Diagonal axis of symmetry
- Not all elements on the axis of symmetry need to be included in the relation
$R=\{(1,1),(1,2),(1,3),(1,4)$,
$(2,4),(3,3),(4,4)\}$

Asymmetric relation

- No axis of symmetry
- Only symmetry occurs on diagonal
- Not all elements on the diagonal need to be included in the relation

Properties of Relations

Definition: A relation R on a set A is transitive if whenver $(a, b) \in$ R and $(b, c) \in R$, then $(a, c) \in R$ for every $a, b, c \in A$.

Note: Our "divides" relation on the set $A=\{1,2,3,4\}$ is transitive.

This isn't terribly interesting, but it is transitive nonetheless....

More common transitive relations include equality and comparison operators like <, $>, \leq$, and \geq.

Examples, redux

Question: Which of the following relations are reflexive, symmetric, antisymmetric, and/or transitive?

- $R_{1}=\{(a, b) \mid a \leq b\}$
- $R_{2}=\{(a, b) \mid a>b\}$
- $R_{3}=\{(a, b) \mid a=b$ or $a=-b\}$
- $R_{4}=\{(a, b) \mid a=b\}$
- $R_{5}=\{(a, b) \mid a=b+1\}$
- $R_{6}=\{(a, b) \mid a+b \leq 3\}$

Answer:

Relations can be combined using set operations

Example: Let R be the relation that pairs students with courses that they have taken. Let S be the relation that pairs students with courses that they need to graduate. What do the relations R $\cup S, R \cap S$, and S - R represent?

Solution:

- $R \cup S=$ All pairs (a, b) where
κ student a has taken course b OR
κ student a needs to take course b to graduate
- $R \cap S=$ All pairs (a, b) where
κ Student a has taken course b AND
κ Student a needs course b to graduate

- $\mathrm{S}-\mathrm{R}=$ All pairs (a, b) where
κ Student a needs to take course b to graduate BUT
κ Student a has not yet taken course b

Relations can be combined using functional composition

Definition: Let R be a relation from the set A to the set B, and S be a relation from the set B to the set C. The composite of R and S is the relation of ordered pairs (a, c), where $a \in A$ and $c \in C$ for which there exists an element $b \in B$ such that $(a, b) \in R$ and $(b$, c) $\in S$. We denote the composite of R and S by $R^{\circ} S$.

Example: What is the composite relation of R and S ?
$R:\{1,2,3\} \rightarrow\{1,2,3,4\}$

- $R=\{(1,1),(1,4),(2,3),(3,1),(3,4)\}$
$S:\{1,2,3,4\} \rightarrow\{0,1,2\}$
- $S=\{(1,0),(2,0),(3,1),(3,2),(4,1)\}$

So: $R^{\circ} S=\{(1,0),(3,0),(1,1),(3,1),(2,1),(2,2)\}$

Group Work!

Problem 1: List the ordered pairs of the relation R from $A=\{0,1,2,3,4\}$ to $B=\{0,1,2,3\}$ where $(a, b) \in R$ iff $a+b=4$.

Problem 2: Is the relation $\{(2,4),(4,2)\}$ on the set $\{1,2,3,4\}$ reflexive, symmetric, antisymmetric, and/or transitive?

We can also "relate" elements of more than two sets

Definition: Let $A_{1}, A_{2}, \ldots, A_{n}$ be sets. An n-ary relation on these sets is a subset of $A_{1} \times A_{2} \times \ldots \times A_{n}$. The sets $A_{1}, A_{2}, \ldots, A_{n}$ are called the domains of the relation, and n is its degree.

Example: Let R be the relation on $\mathbf{Z} \times \mathbf{Z} \times \mathbf{Z}^{+}$consisting of triples $(\mathrm{a}, \mathrm{b}, \mathrm{m})$ where $\mathrm{a} \equiv \mathrm{b}(\bmod \mathrm{m})$.

- What is the degree of this relation?
- What are the domains of this relation?
- Are the following tuples in this relation?

К $(8,2,3)$
$\kappa(-1,9,5)$
К $(11,0,6)$

Final Thoughts

Relations allow us to represent and reason about the relationships between sets in a more general way than functions did

