

be written as the product of primes
$P(n) \equiv n$ can be written as a product of primes
Base case: $P(2): 2 = 2^1$
I.H.: Assume that $P(2) \land \land P(k)$ holds for an arbitrary integer k
Inductive step: We will now show that $[P(2) \land \land P(k)] \rightarrow P(k+1)$
Two cases to consider: k+1 prime and k+1 composite
If k+1 is prime, then we're done
If k+1 is composite, then by definition, k+1 = ab
Since 2 ≤ a < k+1 and 2 ≤ b < k+1, a and b can be written as products of primes by the I.H.
Thus, k+1 can be written as a product of primes
Conclusion: Since we have proved the base case and the inductive case, the claim holds by strong induction \Box

Proof by induction is often used to reason about:

- Algorithm properties (correctness, etc.)
- Properties of data structures
- Membership in certain sets
- Determining whether certain expressions are well-formed
- ...

To begin looking at how we can use induction to prove the above types of statements, we first need to learn about recursion

This is often used to specify the operations permissible in a given formal language (e.g., a programming language)

Example: Defining propositional logic

- 1. Basis step: T, F, and s are well-formed propositional logic statements (where s is a propositional variable)
- - **下** (E ∧ F)
 - **下** (E ∨ F)
 - \land (E \rightarrow F)

