

Question: Aren't sequences just sets?

Answer: The elements of a sequence are members of a set, but a sequence is ordered, a set is not.

Question: How are sequences different from ordered n-tuples?

Answer: An ordered n-tuple is ordered, but always contains n elements. Sequences can be infinite!

- 1. Are there runs of the same value?
- 2. Are terms obtained by multiplying the previous value by a particular amount? (Possible geometric sequence)
- 3. Are terms obtained by adding a particular amount to the previous value? (Possible arithmetic sequence)
- 4. Are terms obtained by combining previous terms in a certain way?
- 5. Are there cycles amongst terms?

There are other closed form summations that		
	you should know	
	Sum	Closed Form

We can use the notion of sequences to analyze the cardinality of infinite sets

Definition: Two sets A and B have the same cardinality if and only if there is a one-to-one correspondence from A to B.

Definition: A finite set or a set that has the same cardinality as the natural numbers is called countable. A set that is not countable is called uncountable.

Implication: Any sequence $\{a_n\}$ ranging over the natural numbers is countable.

