CS441 - Discrete Structures for Computer Science

Instructor: Dr.Litman

Problems from Section 4.3

4. a)
$$f(2) = f(1) - f(0) = 1 - 1 = 0$$
, $f(3) = f(2) - f(1) = 0 - 1 = -1$, $f(4) = f(3) - f(2) = -1 - 0 = -1$, $f(5) = f(4) - f(3) = -1 - 1 = 0$

b) Clearly
$$f(n) = 1$$
 for all n , since $1 \cdot 1 = 1$.

c)
$$f(2) = f(1)^2 + f(0)^3 = 1^2 + 1^3 = 2$$
, $f(3) = f(2)^2 + f(1)^3 = 2^2 + 1^3 = 5$, $f(4) = f(3)^2 + f(2)^3 = 5^2 + 2^3 = 33$, $f(5) = f(4)^2 + f(3)^3 = 33^2 + 5^3 = 1214$

d) Clearly
$$f(n) = 1$$
 for all n , since $1/1 = 1$.

8. Many answers are possible.

- a) Each term is 4 more than the term before it. We can therefore define the sequence by $a_1 = \frac{3}{2}$ $a_{n+1} = a_n + 4$ for all $n \ge 1$.
- b) We note that the terms alternate: 0, 2, 0, 2, and so on. Thus we could define the sequence by $a_1 = 0$, $a_2 = 2$, and $a_n = a_{n-2}$ for all $n \ge 3$.
- c) The sequence starts out 2, 6, 12, 20, 30, and so on. The differences between successive terms are 4, 6, 8, 10, and so on. Thus the n^{th} term is 2n greater than the term preceding it; in symbols: $a_n = a_{n-1} + 2n$. Together with the initial condition $a_1 = 2$, this defines the sequence recursively.
- d) The sequence starts out 1, 4, 9, 16, 25, and so on. The differences between successive terms are 3, 5, 7, 9, and so on—the odd numbers. Thus the n^{th} term is 2n-1 greater than the term preceding it; in symbols: $a_n = a_{n-1} + 2n - 1$. Together with the initial condition $a_1 = 1$, this defines the sequence recursively.