CS441 - Discrete Structures for Computer Science
Instructor: Dr.Litman

Problem from Section 3.4

6.

Under the hypotheses, we have $c=a s$ and $d=b t$ for some s and t. Multiplying, we obtain $c d=a b(s t)$, which means that $a b \mid c d$ as desired.
10.
a) $44 \operatorname{div} 8=5,44 \bmod 8=4$
b) $777 \operatorname{div} 21=37,777 \bmod 21=0$
c) $-123 \operatorname{div} 19=-7,-123 \bmod 19=10$
d) $-1 \operatorname{div} 23=-1,-1 \bmod 23=22$
e) $-2002 \operatorname{div} 87=-24,-2002 \bmod 87=86$
f) $0 \operatorname{div} 17=0,0 \bmod 17=0$
g) $1234567 \operatorname{div} 1001=1233,1234567 \bmod 1001=334$
h) $-100 \operatorname{div} 101=-1,-100 \bmod 101=1$
12.

Assume that $\mathrm{a} \equiv \mathrm{b}(\bmod \mathrm{m})$. This means that $\mathrm{m} \mid(\mathrm{b}-\mathrm{a})$, say $\mathrm{a}-\mathrm{b}=\mathrm{mc}$, so that $\mathrm{a}=\mathrm{b}+\mathrm{mc}$. Now let us compute a mod m. We know that $b=q m+r$ for some nonnegative r less than m (namely, $\mathrm{r}=\mathrm{b} \bmod \mathrm{m}$). Therefore we can write $\mathrm{a}=\mathrm{qm}+\mathrm{r}+\mathrm{mc}=(\mathrm{q}+\mathrm{c}) \mathrm{m}+\mathrm{r}$. By definition this means that r must also equal a mod m . That is what we wanted to prove.
16.
a) $-17 \bmod 2=1$
b) $144 \bmod 7=4$
c) $-101 \bmod 13=3$
d) $199 \bmod 19=9$
32.

We need to subtract 3 from each letter. For example E goes down to B and B goes down to Y .
a) BLUE JEANS
b) TEST TODAY
c) EAT DIM SUM

Problem from Section 3.5

2.

The numbers 19, 101, 107, 113 are prime, as we can verify using trial division. 27 and $93=31 * 3$ are not prime.
4.

By trial division: $39=3^{*} 13,81=3^{4}, 101$ is prime, $143=11 * 13,289=17^{2}, 899=29 * 31$

