Exam II (closed book) CS 441 Spring 2005, Dr. Litman

1. Check the pages, there should be 5 (multi-part) questions.
2. Please remember to put your name below.
3. Put your initials on the bottom of each page.
4. Pace yourself!

Name:

Problem	Max	Score
1	20	
2	20	
3	20	
4	20	
5	20	
total	100	

1. Functions

(a) Let $f(n)=2 n+1$. Answer the following questions AND explain your reasons behind the answers.

- Is f a one-to-one function from the set of integers to the set of integers?
- Is f an onto function from the set of integers to the set of integers?
- Is f a bijection?
- What are the domain, codomain, and range of f ?
(b) Suppose $g: A \rightarrow B$ and $f: B \rightarrow C$ where $A=B=C=\{1,2,3,4\}$, and $g=\{(1,4),(2,1),(3,1),(4,2)\}$, and $f=\{(1,3),(2,2),(3,4),(4,2)\}$
- Find f o g
- Find $g o f$
- Find $g o g$
- Find $g o(g \circ g)$

2. Sequences and Summations

(a) Find the formulas that generate each of the following sequences $a_{1}, a_{2}, a_{3}, \ldots$ - $5,9,13,17,21, \ldots$

- $1,1 / 3,1 / 5,1 / 7,1 / 9, \ldots$
(b) Find the sum that generates each of:
- $1 / 4+1 / 8+1 / 16+1 / 32+\ldots$
- $2+4+8+16+32+\ldots+2^{28}$
(c) Find the values of:

$$
\sum_{j=2}^{8} 3
$$

and

$$
\sum_{j=0}^{4}(2 j+1)
$$

(d) What are the values of the terms a_{1}, a_{3} and a_{5} of the sequence a_{n}, where

- $a_{n}=n^{2}+n$
- $a_{n}=2$

3. Mathematical Induction

(a) Suppose you wish to prove that the following is true for all positive integers n by using the Principle of Mathematical Induction:
$1+3+5+\ldots+(2 n-1)=n^{2}$.

- Write $P(1)$
- Write $P(72)$
- Write $P(73)$
- Use $P(72)$ to prove $P(73)$
- Write $P(k)$
- Write $P(k+1)$
- Use Induction to prove that $P(n)$ is true for all positive integers n.

4. Recursion

(a) Find $f(2)$ and $f(3)$ if $f(n)=f(n-1) / f(n-2), f(0)=2 f(1)=5$
(b) Suppose that $\left\{a_{n}\right\}$ is defined recursively by $a_{n}=a_{n-1}^{2}-1$ and that $a_{0}=2$. Find a_{2} and a_{3}.
(c) Write a recursive definition for the function $f(n)=a n$ (using addition), where n is a positive integer and a is a real numer.
(d) Give a recursive definition (with initial condition(s)) of $\left\{a_{n}\right\}$ (where $(n=1,2,3, \ldots)$ for $\left\{a_{n}\right\}=2^{n}$.

5. Miscellaneous

(a) What is wrong with the following proof that every positive integer equals the next larger positive integer?
"Proof." Let $P(n)$ be the proposition that $n=n+1$. Assume that $P(k)$ is true, so that $k=k+1$. Add 1 to both sides of this equation to obtain $k+l=k+2$. Since this is the statement $P(k+1)$, it follows that $P(n)$ is true for all positive integers n.
(b) Does the following rule for g describe a function: $g: N \rightarrow N$ where $g(n)=$ any integer $>n$. State yes or no, and explain.
(c) Suppose $f: R \rightarrow R$ and $g: R \rightarrow R$ where $g(x)=2 x+1$ and g o $f(x)=$ $2 x+11$. Find the rule for f.
(d) Find the value of:

$$
\sum_{k=1}^{2} \sum_{j=0}^{1}(2 j+2 k)
$$

(e) Suppose that f is the function from the set $\{a, b, c, d\}$ to itself with $f(a)=d, f(b)=a, f(c)=b, f(d)=c$. Find the inverse of f.

