
Student Name_____

<u>Exam I</u>

Question	Score	
1 (20 pts)		
2 (20 pts)		
3 (20 pts)		
4 (20 pts)		
5 (20 pts)		

1. Question 1 (20 points)

(a) Write the truth table for the following proposition:

 $(\mathbf{q} \rightarrow \neg \mathbf{r}) \lor (\mathbf{p} \land \neg \mathbf{r})$

(b) Using the rules of logical equivalence, show that the following two compound propositions are logically equivalent:

```
[p \rightarrow (\neg q \land r)] \Leftrightarrow \neg p \lor \neg (r \rightarrow q)
```

2. Question 2 (20 points)

a) (10 points) Let the variable x represent students and the variable y represent courses. Define a set of predicates, and write the following statements using quantifiers:

(1) Some students are not busy.

- (2) No computer science students are sleepy.
- (3) There is a course that every computer science student is taking.
- **b**) (6 points) Suppose that P(x) is "x + 1 = 3x", where x is a real number. Find the truth value of the following statements:
 - (1) P(3)
 - (2) $\forall x P(x)$
 - (3) $\exists x P(x)$

c) (4 points) Write two propositions in Predicate Calculus that are logically equivalent to $\neg \forall x \exists y P(x,y)$

- (1)
- (2)

Proofs

3. Question 3 (20 points)

Given the following hypotheses:

- No student in this class is a graduate student.
- All students taking this exam are students in this class.
- Panther is taking this exam.

Using the rules of inferences, show that these hypotheses will lead to the following:

[Panther is not a graduate student]

Assume your universe of discourse is the set of all students, and use the following predicates:

InClass(x) : x is in this class

Grad(x): x is a graduate student

InExam(x): x is taking this exam

Step	Proposition	Justification	Applied to
------	-------------	---------------	------------

4. Question 4 (20 points)

Consider the following theorem: If x is an odd integer, then x + 2 is odd.

(a) Given a *direct proof* of this theorem.

(b) Give an *indirect proof* of this theorem.

Let A = $\{a,c,e,h,k\}$, B= $\{a,b,d,e,h,i,k,l\}$ and C = $\{a,c,e,i,m\}$. Find each of the following sets:

- (a) $A \cap B \cap C$
- (b) A U B U C
- (c) A B
- (d) A (B C)

Indicate whether the following proposition is true or false:

- (e) $\{a\} \in \{a,c,e,h,k\}$
- (f) $\{a,b\} \subseteq \{a,b,d,e,h,i,k,l\}$
- (g) {x | x is a letter of the alphabet} {x | x is a vowel} = {a,e,i,o,u}

Let $D = \{ \{ \}, \{a, \{ \} \} \}$

- (h) What is the cardinality of D?
- (i) Give the power set of D.

Write as an explicit set the Cartesian product $\{a, b, c\} \times \{1, 2\}$

(j)