Student Name \qquad

Exam I

Question	Score
$\mathbf{1}(20$ pts $)$	
$2(20$ pts)	
$3(20$ pts)	
$4(20$ pts)	
$5(20$ pts)	

Logic \& propositional equivalences

1. Question 1 (20 points)

(a) Write the truth table for the following proposition:

$$
(\mathbf{q} \rightarrow \neg \mathbf{r}) \vee(\mathbf{p} \wedge \neg \mathbf{r})
$$

(b) Using the rules of logical equivalence, show that the following two compound propositions are logically equivalent:

$$
[\mathbf{p} \rightarrow(\neg \mathbf{q} \wedge \mathbf{r})] \Leftrightarrow \neg \mathbf{p} \vee \neg(\mathbf{r} \rightarrow \mathbf{q})
$$

2. Question 2 (20 points)

a) (10 points) Let the variable x represent students and the variable y represent courses. Define a set of predicates, and write the following statements using quantifiers:
(1) Some students are not busy.
(2) No computer science students are sleepy.
(3) There is a course that every computer science student is taking.
b) (6 points) Suppose that $\mathrm{P}(\mathrm{x})$ is " $\mathrm{x}+1=3 \mathrm{x}$ ", where x is a real number. Find the truth value of the following statements:
(1) $\mathrm{P}(3)$
(2) $\forall x P(x)$
(3) $\exists \mathrm{x} P(\mathrm{x})$
c) (4 points) Write two propositions in Predicate Calculus that are logically equivalent to $\neg \forall \mathrm{x} \exists \mathrm{y}$ P(x,y)
(1)
(2)

3. Question 3 (20 points)

Given the following hypotheses:

- No student in this class is a graduate student.
- All students taking this exam are students in this class.
- Panther is taking this exam.

Using the rules of inferences, show that these hypotheses will lead to the following:
[Panther is not a graduate student]
Assume your universe of discourse is the set of all students, and use the following predicates:
InClass(x) : x is in this class
$\operatorname{Grad}(x)$: x is a graduate student
$\operatorname{InExam}(\mathrm{x})$: x is taking this exam

Step	Proposition	Justification	Applied to

4. Question 4 (20 points)

Consider the following theorem: If x is an odd integer, then $\mathrm{x}+2$ is odd.
(a) Given a direct proof of this theorem.
(b) Give an indirect proof of this theorem.

5. Question 5 (20 points)

Let $A=\{a, c, e, h, k\}, B=\{a, b, d, e, h, i, k, l\}$ and $C=\{a, c, e, i, m\}$. Find each of the following sets:
(a) $\mathrm{A} \cap \mathrm{B} \cap \mathrm{C}$
(b) $\mathrm{A} \cup \mathrm{B} \cup \mathrm{C}$
(c) $\mathrm{A}-\mathrm{B}$
(d) $\mathrm{A}-(\mathrm{B}-\mathrm{C})$

Indicate whether the following proposition is true or false:
(e) $\{\mathrm{a}\} \in\{\mathrm{a}, \mathrm{c}, \mathrm{e}, \mathrm{h}, \mathrm{k}\}$
(f) $\{\mathrm{a}, \mathrm{b}\} \subseteq\{\mathrm{a}, \mathrm{b}, \mathrm{d}, \mathrm{e}, \mathrm{h}, \mathrm{i}, \mathrm{k}, \mathrm{l}\}$
(g) $\{\mathrm{x} \mid \mathrm{x}$ is a letter of the alphabet $\}-\{\mathrm{x} \mid \mathrm{x}$ is a vowel $\}=\{\mathrm{a}, \mathrm{e}, \mathrm{i}, \mathrm{o}, \mathrm{u}\}$

Let $\mathrm{D}=\{\{ \},\{\mathrm{a},\{ \}\}\}$
(h) What is the cardinality of D ?
(i) Give the power set of D.

Write as an explicit set the Cartesian product $\{\mathrm{a}, \mathrm{b}, \mathrm{c}\} \times\{1,2\}$

