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Abstract 

This paper describes a simple heuristic method 
for solving large-scale constraint satisfaction and 
scheduling problems. Given an initial assignment 
for the variables in a problem, the method oper- 
ates by searching though the space of possible re- 
pairs. The search is guided by an ordering heuris- 
tic, the min-conflicts heuristic, that attempts to 
minimize the number of constraint violations af- 
ter each step. We demonstrate empirically that 
the method performs orders of magnitude better 
than traditional backtracking techniques on cer- 
tain standard problems. For example, the one mil- 
lion queens problem can be solved rapidly using 
our approach. We also describe practical schedul- 
ing applications where the method has been suc- 

. cessfully applied. A theoretical analysis is pre- 
sented to explain why the method works so well 
on certain types of problems and to predict when 
it is likely to be most effective. 

Introduction 
One of the most promising general approaches for solv- 
ing combinatorial search problems is to generate an 
initial, suboptimal solution and then to apply local 
repair heuristics. Techniques based on this approach 
have met with empirical success on many problems, in- 
cluding the traveling salesman and graph partitioning 
problems[ll]. Such techniques also have a long tradi- 
tion in AI, most notably in problem-solving systems 
that operate by debugging initial solutions [20,22]. 
This idea can be extended to constraint satisfication 
problems in a straightforward manner. Our method 
takes an initial, inconsistent assignment for the vari- 
ables in a constraint satisfaction problem (CSP) and 
incrementally repairs constraint violations until a con- 
sistent assignment is achieved. The method is guided 
by a simple ordering heuristic for repairing constraint 
violations: select a variable that is currently participat- 
ing in a constraint violation, and choose a new value 
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that minimizes the number of outstanding constraint 
violat ions. 

The work described in this paper was inspired by 
a surprisingly effective neural network developed by 
Adorf and Johnston for scheduling the use of the Hub- 
ble Space Telescope[2,13]. Our heuristic CSP method 
was distilled from an analysis of the network, and 
has the virtue of being extremely simple. It can be 
implemented very efficiently within a symbolic CSP 
framework, and combined with various search strate- 
gies. This paper includes empirical studies showing 
that the method performs extremely well on some stan- 
dard problems, such as the n-queens problem, to the 
extent that the method can quickly find solutions to 
the one million queens problem. We also describe ini- 
tial work on large-scale scheduling applications which 
suggests that the method has important practical im- 
plications as well. The final contribution of this pa- 
per is a theoretical analysis that describes how various 
problem characteristics affect the performance of the 
method. 

Previous Work: The GDS Network 

By almost any measure, the Hubble Space Telescope 
scheduling problem is a complex task [24,19,12]. Be- 
tween ten thousand and thirty thousand astronomical 
observations per year must be scheduled, subject to 
a vast variety of constraints involving time-dependent 
orbital characteristics, power restrictions, priorities, 
movement of astronomical bodies, stray light sources, 
etc. Because the telescope is an extremely valuable 
resource with a limited lifetime, efficient scheduling is 
a critical concern. An initial scheduling system, de- 
veloped in FORTRAN using traditional programming 
methods, highlighted the difficulty of the problem; it 
was estimated that it would take over three weeks for 
the system to schedule one week of observations. A 
more successful constraint-based system was then de- 
veloped to augment the original system. At its heart is 
a neural network developed by Johnston and Adorf, the 
Guarded Discrete Stochastic (GDS) network, which 
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searches for a schedule [2,13]. 
From a computational point of view, the network 

is interesting because Johnston and Adorf found that 
it performs well on a variety of tasks, in addition to 
the space telescope scheduling problem. For exam- 
ple, the network performs significantly better on the n- 
queens problem than previous heuristic methods. The 
n-queens problem requires placing n queens on an n x n 
chessboard so that no two queens share a row, col- 
umn or diagonal. The network has been used to solve 
problems of up to 1024 queens, whereas previous meth- 
ods discussed in the literature[21] encounter difficulties 
with problems that are ten times smaller. Later in this 
paper we describe how our analysis of the GDS network 
enabled us to build a simple heuristic algorithm that 
performs even better. 

The GDS network is a modified Hopfield network[9]. 
The most significant modification is that the main net- 
work is coupled asymmetrically to an auxiliary network 
of guard neuTons which restricts the configurations that 
the network can assume. This modification enables 
the network to rapidly find a solution for many prob- 
lems, even when the network is simulated on a serial 
machine. The disadvantage is that convergence to a 
stable configuration is no longer guaranteed. Thus, 
the network can fall into a local minimum involving a 
group of unstable states among which it will oscillate. 
In practice, however, if the network fails to converge 
after some number of neuron state transitions, it can 
simply be stopped and started over. ’ 

To illustrate the network architecture and updat- 
ing scheme, let us consider how the network is used 
to solve binary constraint satisfaction problems. A 
problem consists of n variables, Xr . . . Xn, with do- 
mains Dr . . . D,, and a set of binary constraints. Each 
constraint Ca(Xj, Xk) is a subset of Dj x Dk speci- 
fying incompatible values for a pair of variables.2 To 
solve a CSP using the network, each variable is rep- 
resented by a separate set of neurons, one neuron for 
each of the variable’s possible values. Each neuron is 
either “on” or “off”, and in a solution state, every vari- 
able will have exactly one of its corresponding neurons 
“on” , representing the value of that variable. Con- 
straints are represented by inhibitory (i.e., negatively 
weighted) connections between the neurons. To insure 
that every variable is assigned a value, there is a guard 
neuron for each set of neurons representing a variable; 
if no neuron in the set is on, the guard neuron will pro- 
vide an excitatory input that is large enough to turn 

‘The emphasis in Johnston and Adorf’s work is to pro- 
duce a computational architecture that can efficiently solve 
CSP problems, as opposed to modeling cognitive or neural 
behavior. Our discussion necessarily ignores many aspects 
of Johnston and Adorf’s work, which is described in detail 
elsewhere[l3,2]. 

2This paper on y 1 considers the task of finding a single 
solution, that is, finding an assignment for each of the vari- 
ables which satisfies the constraints. 

one on. (Due to the way the connection weights are 
set up, it is unlikely that the guard neuron will turn 
on more than one neuron.) The network is updated on 
each cycle by randomly picking a set of neurons that 
represents a variable, and flipping the state of the neu- 
ron in that set whose input is most inconsistent with 
its current output (if any). When all neurons’ states 
are consistent with their input, a solution is achieved. 

The Min-Conflicts Heuristic 
Why does the GDS network perform so much better 
than traditional backtracking methods on tasks such 
as the n-queens ? In addressing this question, we be- 
gan with a number of competing hypotheses (some of 
which were suggested by Adorf and Johnston[2]). For 
instance, one hypothesis was that the systematic na- 
ture of the search carried out by backtracking is the 
source of its problems, as compared to the stochastic 
nature of the search carried out by the network. Specif- 
ically, if solutions in the backtracking space are clus- 
tered together (with correspondingly high inter-cluster 
distances), then a completely randomized search of the 
space can be more effective than systematic backtrack- 
ing. However, although tasks such as n-queens are 
in fact solved more efficiently using randomized algo- 
rithms (such as Las Vegas algorithms [4]), our studies 
indicate that the performance of the GDS network is 
far too good to be explained by this hypothesis. 

As it turns out, the key to the network’s performance 
appears to be that when it chooses a neuron to update, 
it chooses the neuron whose state is most inconsistent 
with its input. Thus, from a constraint satisfaction 
perspective, the network will “deassign” a variable’s 
current value only if it is inconsistent with other vari- 
ables. Furthermore, when a new value is later assigned, 
the network will choose the value that minimizes the 
number of other variables that it is inconsistent with. 
This idea is captured by the following heuristic: 

Min-Conflicts heuristic: 
Given: A set of variables, a set of binary constraints, 
and an assignment specifying a value for each vari- 
able. Two variables co@ict if their values violate a 
constraint. 
Procedure; Select a variable that is in conflict, and as- 
sign it a value that minimizes the number of conflicts.3 
(Break ties randomly.) 

We have found that the network’s behavior can be 
approximated by a symbolic system that uses the min- 

31n general, the heuristic attempts to minimize the num- 
ber of other variables that will need to be repaired. For 
binary CSPs, this corresponds to minimizing the number 
of conflicting variables. For general CSPs, where a single 
constraint may involve several variables, the exact method 
of counting the number of variables that will need to be re- 
paired depends on the particular constraint. The space 
telescope scheduling problem is a general CSP, whereas 
most of the other tasks described in this paper are binary 
CSPS. 

18 AUTOMATEDREASONING 



conflicts heuristic for hill-climbing. The hill-climbing 
system starts with an initial assignment generated in a 
preprocessing phase. At each choice point, the heuris- 
tic chooses a variable that is currently in conflict and 
reassigns its value, until a solution is found. The sys- 
tem thus searches the space of possible assignments, 
favoring assignments with fewer total conflicts. Of 
course, the hill-climbing system can become “stuck” 
in a local maximum, in the same way that the network 
may become “stuck” in a local minimum. In the next 
section we present empirical evidence to support our 
claim that the min-conflicts heuristic is responsible for 
the network’s effectiveness. 

One of the virtues of extracting the heuristic from 
the network is that the heuristic can be used with a 
variety of different search strategies in addition to hill- 
climbing. For example, we have found that informed 
backtracking can be an effective strategy when used in 
the following manner. Given an initial assignment gen- 
erated in a preprocessing phase (as described above), 
an informed backtracking program employs the min- 
conflicts heuristic to order the choice of variables and 
values to consider, as described in figure 1. Initially 
the variables are all on a list of VARS-LEFT, and as 
they are repaired, they are pushed onto a list of VARS- 
DONE. The program attempts to find a sequence of 
repairs, such that no variable is repaired more than 
once. If there is no way to repair a variable in VARS- 
LEFT without violating a previously repaired variable 
(a variable in VARS-DONE), the program backtracks. 

It should be clear that the informed backtracking al- 
gorithm is simply a basic backtracking algorithm aug- 
mented with the min-conflicts heuristic to order its 
choice of which variable and value to attend to. This il- 
lustrates an important point. The informed backtrack- 
ing program incrementally extends a consistent partial 
assignment (i.e., VARS-DONE), in the same manner as 
a basic backtracking program, but in addition, uses in- 
formation from the initial assignment (i.e., VARS-LEFT) 
to bias its search. The next section documents the de- 
gree to which this information is useful. 

Experimental Results 
This section has two purposes. First, we evaluate 
the performance of the min-conflicts heuristic on some 
standard tasks using a variety of search strategies. Sec- 
ond, we show that the heuristic, when used with a hill- 
climbing strategy, approximates the behavior of the 
GDS network. 

We have employed the following search strategies 
with the min-conflicts heuristic: 

1. Hill-climbing: This strategy most closely replicates 
the behavior of the GDS network. The disadvantage 
is that a hill-climbing program can get caught in 
local maxima, in which case it will not terminate. 

2. Informed backtracking: As described earlier, this 
strategy is a basic backtracking strategy, augmented 

Procedure INFORMED-BACKTRACK WARS-LEFT VARS-DONE) 
If all variables are consistent, 
then solution found, STOP. 

Let VAR = a variable in VARS-LEFT 
that is in conflict. 

Remove VAR from VARS-LEFT. 
Push VAR onto VARS-DONE. 
Let VALUES = list of possible values for VAR 
ordered in ascending order according to number 
of conflicts with variables in VARS-LEFT. 

For each VALUE in VALUES, until solution found: 
If VALUE does not conflict with any variable 

that is in VARS-DONE, then 
Assign VALUE to VAR. 
Call INFORMED-BACKTRACKCVARS-LEFT VARS-DONE) 

end if 
end for 
end procedure 

Begin program 
Let VARS-LEFT = list of all variables, 

each assigned an initial value. 
Let VARS-DONE = nil 
Call INFORMED-BACKTRACKWARS-LEFT VARS-DONE) 
End program 

Figure 1: Informed Backtracking Using the Min- 
Conflicts Heuristic 

3. 

with the min-conflicts heuristic for ordering the as- 
signment of variables and values. Because the min- 
conflicts heuristic repairs the initial assignment, it 
can also be viewed as backtracking in the space of 
possible repairs. One advantage of this strategy is 
that it is complete-if there is a solution, it will even- 
tually be found; if not, failure will be reported. Un- 
fortunately, this is of limited significance for large- 
scale problems because terminating in a failure can 
take a very long time. A second advantage is that 
the strategy can be augmented with pruning heuris- 
tics which cut off unpromising branches. This can 
be very useful, as documented in the next section. 

Best-first search: This strategy keeps track of multi- 
ple assignments (each corresponding to a leaf in the 
search tree). On each cycle it picks the assignment 
with the fewest constraint violations and considers 
the set of repairs that can be applied to that as- 
signment. We have found that best-first search (of 
which A* is one variation) is generally expensive to 
employ on large-scale problems due to the cost of 
maintaining multiple assignments. 

The N-Queens Problem 

The n-queens problem, originally posed in the 19th 
century, has become a standard benchmark for test- 
ing backtracking and CSP algorithms. In a sense, the 
problem of finding a single solution was “solved” in the 
1950’s by the discovery of a pair of patterns that can 
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Strategy n=lO1 n = lo2 n=103 n=104 n=105 n= lo6 

Basic Backtracki 53.8 4473 (70%) 88650(13%) * * * 

Most Constrained Backtrackt 17.4 687 (96%) 22150 (81%) * * * 

MinConflicts Hi-Climbingx 57.0 55.6 48.8 48.5 52.8 48.3 

MinConflicts Backtrack t: 46.8 25.0 30.7 27.5 27.8 26.4 

i = number of backtracks, $ = number of repairs 
* = exceeded computational resources (100 runs required > 12 hours on a SPARCstationl) 

Table 1: Number of Backtracks/Repairs for N-Queens Algorithms 

be instantiated in linear time to yield a solution[l]. 
Nevertheless, the problem has remained relatively 
“hard” for heuristic search methods. Several stud- 
ies of the n-queens problem [21,8,14] have compared 
heuristic backtracking methods such as search rear- 
rangement backtracking (e.g., most-constrained first), 
forward checking, dependency-directed backtracking, 
etc. However, no previously identified heuristic search 
method has been able to consistently solve problems 
involving hundreds of queens within a reasonable time 
limit. 

On the n-queens ,problem, Adorf and Johnston [2] 
reported that the probability of the GDS network con- 
verging increases with the size of the problem. For 
large problems, e.g., n > 100 (where n is the num- 
ber of queens), the network almost certainly converges. 
Moreover, the median number of cycles required for 
convergence is only about 1.167~. Since it takes O(n) 
time to execute a transition (i.e., picking a neuron and 
updating its connections), the expected time to solve 
a problem is (empirically) approximately O(n2). The 
network has been used to solve problems with as many 
as 1024 queens, which takes approximately 11 minutes 
in Lisp on a TI Explorer II. For larger problems, mem- 
ory becomes a limiting factor because the the network 
requires approximately O(n2) space. (Although the 
number of non-zero connections is O(n3), some connec- 
tions are computed dynamically rather than stored). 

To compare the network with our min-conflicts ap- 
proach, we constructed a hill-climbing program that 
operates as follows. An initial assignment is created 
in a preprocessing phase using a greedy algorithm that 
iterates through the rows, placing each queen on the 
column where it conflicts with the fewest previously 
placed queens (breaking ties randomly). In the sub- 
sequent repair phase, the program keeps repairing the 
assignment until a solution is found. To make a re- 
pair, the program selects a queen that is in conflict and 
moves it to a different column in the same row where 
it conflicts with the fewest other queens (breaking ties 
randomly). Interestingly, we found that this program 
performs significantly better than the network. For 
n 2 100 the program has never failed to find a solution. 
Moreover, the required number of repairs appears to 
remain constant as n increases. After further analysis, 
however, we found the hill-climbing program performs 

20 AUTOMATED REASONING 

better than the network because the hill-climbing pro- 
gram’s preprocessing phase invariably produces an ini- 
tial assignment that is “close” to a solution, in that 
the number of conflicting queens in the initial assign- 
ment grows extremely slowly (from a mean of 3.1 for 
n = 10 to a mean of 12.8 for n = 10”). Once this dif- 
ference was eliminated, by starting the network in an 
initial state produced by our preprocessing algorithm, 
the network and the hill-climbing program performed 
quite similarly. We note, however, that the network 
requires O(n2) space, as compared to the O(n) space 
required by the hill-climbing program, which prevented 
us from running very large problems on the network. 

Table 1 compares the efficiency of our hill-climbing 
program and several backtracking programs. Each pro- 
gram was run 100 times for n increasing from 10 to 
one million. Each entry in the table shows the mean 
number of queens moved, where each move is either 
a backtrack or a repair, depending on the program. 
A bound of n x 100 queen movements was employed 
so that the experiments could be conducted in a rea- 
sonable amount of time; If the program did not find a 
solution after moving n x 100 queens, it was terminated 
and credited with n x 100 queen movements. For the 
cases when this occurred, the corresponding table en- 
try indicates in parentheses the percentage of times 
the program completed successfully. The first row 
shows the results for a basic backtracking program. For 
n 2 1000, the program was completely swamped. The 
second row in the table shows the results for informed 
backtracking using the “most-constrained first” heuris- 
tic. This program is a basic backtracking program that 
selects the row that is most constrained when choosing 
the next row on which to place a queen. In an empirical 
study of the n-queens problem, Stone and Stone [21] 
found that this was by far the most powerful heuris- 
tic for the n-queens problem out of several described 
earlier by Bitner and Reingold[3]. The program ex- 
hibited highly variable behavior. At n = 1000, the 
program found a solution on only 81% of the runs, but 
three-quarters of these successful runs required fewer 
than 100 backtracks. Unfortunately, for n > 1000, 
one hundred runs of the program required considerably 
more than 12 hours on a SPARCstationl, both because 
the mean number of backtracks grows rapidly and be- 
cause the “most-constrained first” heuristic takes O(n) 



Problem Size 

Figure 2: Mean Solution Time for Hill-Climbing Pro 
gram on N-Queens Problem 

time to select the next row after each backtrack. Thus 
we were prevented from generating sufficient data for 
n > 1000. The next row in the table shows the re- 
sults for hill-climbing using the min-conflicts heuris- 
tic. As discussed above, this algorithm performed ex- 
tremely well, requiring only about 50 repairs regardless 
of problem size. The final row shows the results for 
an informed backtracking program that used the min- 
conflicts heuristic as described in the previous section. 
We augmented this program with a pruning heuristic 
that would initiate backtracking when the number of 
constraint violations along a path began to increase sig- 
nificantly. However, for n > 100, this program never 
backtracked (i.e., no queen had to be repaired more 
than once). The results are better than those for the 
hill-climbing program (although there is little room for 
improvement) primarily because the hill-climbing pro- 
gram tends to repair the same queen again and again. 

We note that for the two programs using the min- 
conflicts heuristic, each repair requires O(n) time in 
the worst case. However, this is a relatively minor 
price to pay. Since the number of repairs remains ap- 
proximately constant as n grows, the average runtime 
of the program is approximately linear. This is illus- 
trated by figure 2, which shows the average runtime for 
the hill-climbing program. In terms of realtime perfor- 
mance, this program solves the million queens problem 
in less than four minutes on a SPARCstationl. (The 
algorithm can also be optimized for large problems, in 
which case the solution time is less than a minute and 
a half.) 

source constraints, preferences, etc. The space tele- 
scope scheduling problem, as discussed earlier, is a 
complex problem on which traditional backtracking 
and operations research techniques perform poorly. 
The problem can be considered a constraint optimiza- 
tion problem where we must maximize both the num- 
ber and the importance of the constraints that are sat- 
isfied. In practice, the GDS network has performed 
quite well using a relatively simple approach. The 
network, in effect, attempts to satisfy as many “im- 
portant” constraints as possible; less “important” con- 
straints, or preferences, are used to break ties during 
the update procedure. Naturally, a similar approach 
can be used with the min-conflicts heuristic. As usual, 
we minimize the number of conflicts, but rather than 
breaking ties randomly, the preference constraints are 
used to break ties. (Due to space limitations, we only 
report our main results here. See [18] for a more in- 
depth discussion of this application.) 

The min-conflicts heuristic under hill-climbing has 
been shown to be at least as effective as the GDS 
network on representative data sets provided by the 
Space Telescope Sciences Institute. Moreover, because 
the min-conflicts heuristic is so simple, the scheduling 
program was easy to code and is extremely efficient.4 
While this may be regarded as just an implementation 
issue, we believe that the clear and simple formulation 
of the method was a significant enabling factor. We 
are currently experimenting with a variety of differ- 
ent search strategies that can be combined with the 
min-conflicts heuristic. Although this study is not yet 
complete, we expect that the improvements in speed 
we have observed will eventually translate into better 
schedules, since the search process can explore a larger 
number of acceptable schedules. 

The min-conflicts method has also been tested on 
data on the Space Shuttle Payload Scheduling prob- 
lem, another complex, real-world scheduling problem. 
Preliminary results show that the method performs far 
better than a backtracking CSP program that was pre- 
viously built for this task[26]. Additional corrobora- 
tion comes from a parallel study by Zweben[25], who 
has investigated a related method for repairing sched- 
ules using simulated annealing. In general, it appears 
that repair-based methods fare quite well on this prob- 
lem. An additional bonus, as Zweben has pointed out, 
is that repair-based methods can also be used for dy- 
namic rescheduling. In many domains this capability 
is important because unexpected events may require 
frequent schedule revision. 

Other Applications 
The min-conflicts and/or GDS network have also been 
tried on a variety of other problems with good (but 

Scheduling Applications 
A scheduling problem involves placing a set of tasks 
on a time line, subject to temporal constraints, re- 

4The scheduling program runs at least an order of mag- 
nitude faster than the network, although some of the im- 
provement is due to factors such as programming language 
differences. This makes a precise comparison difficult. 
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preliminary) results, including the randomly generated 
problems described by Dechter and Pearl [6,2] and con- 
junctive precondition matching problems[l7]. We are 
currently cataloging the types of applications for which 
our method works well. 

We have also compared the performance of the GDS 
network and the mm-conflicts heuristic on graph 3- 
colorability, a well-studied NP-complete problem. In 
this problem, we are given an undirected graph‘with n 
vertices. Each vertex must be assigned one of three col- 
ors subject to the constraint that no neighboring ver- 
tices be assigned the same color. Adorf and Johnston 
found that the performance of the network depended 
greatly on the connectivity of the graph. On sparsely 
connected graphs (with average vertex degree 4) the 
network performed poorly, becoming caught in local 
minima with high probability. On densely connected 
graphs the network converged rapidly to a solution. 

We have repeated Adorf and Johnston’s experiments 
with our hill-climbing program, and found similar re- 
sults. We have also experimented with variations of 
informed backtracking using the min-conflicts heuris- 
tic. Our most effective program is an informed back- 
tracking program that records the assignment with the 
least conflicts found so far. When the number of back- 
tracks exceeds a (dynamically adjusted) threshold, the 
search process is restarted using this best assignment. 
We have found that performance is further improved 
by adding heuristics for selecting which vertex to re- 
pair, and that, as in the n-queens problem, it helps to 
have a good initial assignment, which can also be pro- 
duced using additional heuristics. This illustrates the 
well-known principle that combining multiple heuris- 
tics can improve performance significantly. 

In this domain, certain heuristic methods are known 
to produce excellent results. For instance, Brelaz’s k- 
colorability algorithm [5] employs two strong heuristics 
(forms of “most-constrained first”) and it outperforms 
our informed backtracking algorithm. Turner [23] has 
shown that this algorithm will optimally color “almost 
all” random k-colorable graphs without backtracking, 
so its dominance is not surprising. 

Summary of Experimental Results 

For all of the tasks discussed in the previous section, 
we have found that the behavior of the GDS network 
can be approximated by hill-climbing with the min- 
conflicts heuristic. To this extent, we have a theory 
that explains the network’s behavior. Obviously, there 
are certain practical advantages to having “extracted” 
the heuristic from the network. First, the heuristic is 
very simple, and so can be programmed extremely ef- 
ficiently, especially if done in a task-specific manner. 
Second, the heuristic can then be used in combina 
tion with different search strategies and task-specific 
heuristics. This is a significant factor for most practi- 
cal applications. 

Insofar as the power of the heuristic is concerned, our 

experimental results are encouraging. On the n-queens 
problem the min-conflicts heuristic clearly outperforms 
heuristics that have previously been investigated. Fur- 
thermore, the heuristic has already been applied suc- 
cessfully to real-world scheduling problems. 

We have also considered variations of the min- 
conflicts heuristic, such as repairing the variable that 
participates in the most conflicts first. In general, we 
have found that minor variations of the heuristic do not 
affect performance significantly, as long as the heuris- 
tic tends to decrease the number of variables that are 
inconsistent. 

Analysis 
The previous section showed that the min-conflicts 
heuristic is extremely effective on some tasks, such as 
placing queens on a chessboard, and less effective on 
other tasks, such as coloring sparsely connected graphs. 
In this section, we analyze how the parameters of a 
task influence the effectiveness of the heuristic. Con- 
sider a CSP with n variables, where each variable has Ic 
possible values. We restrict our consideration to a sim- 
plified model where every variable is subject to exactly 
c binary constraints, and we assume that there is only 
a single solution to the problem, that is, exactly one 
satisfying assignment. We address the following ques- 
tion: What is the probability that the mm-conflicts 
heuristic will make a mistake when it assigns a value 
to a variable that is in conflict? We define a mistake 
as choosing a value that will have to be changed again 
before the solution is found. We note that for our in- 
formed backtracking program, a mistake of this sort 
early in the problem-solving process may prove fatal, 
as it may require an exponential amount of search to 
recover from its mistake. 

For any assignment of values to the variables, there 
will be a set of d variables whose values will have to 
be changed to convert the assignment into the solu- 
tion. We can regard d as a measure of distance to the 
solution. The key to our analysis is the following ob- 
servation. Given a variable V to be repaired, only one 
of its I% possible values will be good5 and the other Ic - 1 
values will be bad (i.e., mistakes). Whereas the good 
value may conflict with at most d other variables in the 
assignment, a bad value may conflict with as many as 
c other variables. Thus, as d shrinks, the min-conflicts 
heuristic should be less likely to make a mistake when 
it repairs V. In fact, if each of the k - 1 bad values has 
more than d conflicts, then the min-conflicts heuristic 
cannot make a mistake - it will select the good value 
when it repairs this variable, since the good value will 
have fewer conflicts than any bad value. 
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We can use this idea to bound the probability of 
making a mistake when variable V is repaired. Let 
V’ be a variable related to V by a constraint. We 
assume that a bad value for V conflicts with V’ with 
probability p, independent of the variables V and V’. 
Let Nb be a random variable representing the number 
of conflicts for an arbitrary one of the lo - 1 bad values 
for V. Thus, the expected value for Nb is pc. Since 
we are interested in the behavior of the min-conflicts 
heuristic as d shrinks, let us suppose that d is less than 
pc. Then, to bound the probability that A$, is less than 
d, we can use Hoeffding’s inequality, which states that 
after c trials, the probability that a random variable 
is SC less than the mean is bounded by e-2szc. With 
s = (pc - d)/c, th e relative distance between pc and d, 
we obtain: 

PT(A$, < d) 5 e-2(~c--d)2~c 

To account for the fact that a mistake can occur if 
any of the L - 1 bad values has d or fewer conflicts, we 
bound the probability of making a mistake on any of 
them by multiplying by k: - 1: 

Pr(mistake) 5 (k - l)e-2(pc-d)zlc 

Note that as c (the number of constraints per vari- 
able) becomes large, the probability of a mistake ap- 
proaches zero, if all other parameters remain fixed. 
This analysis thus offers an explanation as to why 3- 
coloring densely connected graphs is relatively easy. 
We also see that as d becomes small, a mistake is also 
less likely, explaining our empirical observation that 
having a “good” initial assignment is important. Ad- 
ditionally, we note that as p increases or k: decreases, 
the probability of a mistake also shrinks. 

The analysis makes several simplifying assumptions, 
including the assumption that only a single solution ex- 
ists. In the n-queens problem, it appears that the num- 
ber of possible solutions grows rapidly with n [21]. To 
explain the excellent performance of the min-conflicts 
heuristic on the n-queens problem, it seems necessary 
to take this additional fact into account; we note that 
for n-queens the bounds derived above are relatively 
weak. (In n-queens, each row is represented by a vari- 
able, so that c = n, and p x 2.5/n, since any two rows 
constrain each other along a column and either one or 
two diagonals. Therefore, pc remains approximately 
constant as n grows.) 

iscussion 
The heuristic method described in this paper can be 
characterized as a lo& search method[ll], in that each 
repair minimizes the number of conflicts for an indi- 
vidual variable. Local search methods have been ap- 
plied to a variety of important problems, often with 
impressive results. For example, the Kernighan-Lin 
method, perhaps the most successful algorithm for 
solving graph-partitioning problems, repeatedly im- 
proves a partitioning by swapping the two vertices 

that yield the greatest cost differential. The much- 
publicized simulated annealing method can also be 
characterized as a form of local search[lO]. However, 
it is well-known that the effectiveness of local search 
methods depends greatly on the particular task. We 
are currently comparing the algorithm’s performance 
with alternative techniques on a variety of tasks. 

There is also a long history of AI programs that 
use repair or debugging strategies to solve problems, 
primarily in the areas of planning and design[22,20]. 
These programs have generally been quite successful, 
although the repair strategies they employ may be do- 
main specific. In comparison, the m&conflicts heuris- 
tic is a completely general, domain-independent ap- 
proach. Of course, any domain-independent heuristic 
is likely to fail in certain cases, precisely because of its 
lack of domain-specific expertise. 

In fact, it is easy to imagine problems on which the 
min-conflicts heuristic will fail. The heuristic is poorly 
suited to problems with a few highly critical constraints 
and a large number of less important constraints. For 
example, consider the problem of constructing a four- 
year course schedule for a university student. We may 
have an initial schedule which satisfies almost all of the 
constraints, except that a course scheduled for the first 
year is not actually offered that year. If this course is 
a prerequisite for subsequent courses, then many sig- 
nificant changes to the schedule may be required be- 
fore it is fixed. In general, if repairing a constraint 
violation requires completely revising the current as- 
signment, then the min-conflicts heuristic will offer lit- 
tle guidance. This intuition is partially captured by 
the analysis presented in the previous section, which 
shows how the effectiveness of the heuristic is inversely 
related to the distance to a solution. 

The problems investigated in this paper, especially 
the n-queens problem, tend to be relatively uniform, 
in that the likelihood of such critical constraints exist- 
ing is low. In the space telescope scheduling problem, 
constraint preprocessing techniques[l6] are applied to 
reduce the likelihood that any particular constraint will 
be highly critical. For example, by taking the transi- 
tive closure of temporal constraints (e.g. the “after” 
relation) and representing each inferred constraint ex- 
plicitly, critical constraints can be transformed into 
sets of constraints. This works well because the 
min-conflicts heuristic will be less likely to violate a 
set of constraints than a single constraint. In some 
cases, we expect that more sophisticated techniques 
will be necessary to identify critical constraints[7]. 
To this end, we are currently evaluating abstraction 
and explanation-based learning techniques that have 
worked well for planning systems[l5,17]. 

Conclusions 
This paper has two primary contributions. First, we 
have analyzed a very successful neural network algo- 
rithm and shown that an extremely simple heuristic 
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is responsible for its effectiveness. Second, we have 
demonstrated that this heuristic can be incorporated 
into symbolic CSP programs with excellent results. 
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