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Abstract 

This paper describes a Bayesian technique for un- 
supervised classification of data and its computer 
implementation, AutoClass. Given real valued 
or discrete data, AutoClass determines the most 
probable number of classes present in the data, 
the most probable descriptions of those classes, 
and each object’s probability of membership in 
each class. The program performs as well as 
or better than other automatic classification sys- 
tems when run on the same data and contains no 
ad hoc similarity measures or stopping criteria. 
AutoClass has been applied to several databases 
in which it has discovered classes representing 
previously unsuspected phenomena. 

ntsoductisn 
AutoClass, an automatic classification program, searches 
for classes in data using Bayesian statistical techniques. It 
defines classes not as partitions of the data but as prob- 
abilistic descriptions of processes represented in the data. 
From these descriptions, one can determine the probability 
that each object is a member of each class. The resulting 
classification system has several important advantages over 
most previous work: 

e AutoClass automatically determines the most prob- 
able number of classes. The classes found represent 
actual structure in the data. Given random data, Au- 
toClass discovers a single class. 

e Bayes’s theorem is all that is required to perform clas- 
sification. No ad hoc similarity measure, stopping 
rule, or clustering quality criterion is needed. Decision 
theory applies directly to the probability distributions 
calculated by AutoClass. 

8 Classification is probabilistic. Class descriptions and 
assignments of objects to classes are given as proba- 
bility distributions. The resulting “fuzzy” classes cap- 
ture the common sense notion of class membership 
better than a categorical classification. 

Q Real valued and discrete attributes may be freely 
mixed, and any attribute values may be missing. 
“Tree valued” attributes can be easily incorporated 
into the AutoClass model as well. 

e Classifications are invariant to changes of the scale or 
origin of the data. 

*This work partially supported by NASA grant NCC2-428 

2 Theory 
When classifying a database, AutoClass does not attempt 
to partition the data into classes, but rather computes 
probabilistic descriptions of classes which account for the 
observed data. In order to find classes in a set of data, we 
make explicit declarations of how members of a class will be 
distributed in the data in the form of parameterized prob- 
abilistic class model functions. For instance, in classifying 
a database of cars, we might assume that the weights of 
cars in a particular class will be distributed normally with 
a mean of 3000 pounds and a standard deviation of 100 
pounds. Our class model function in this case is a Gaus- 
sian curve. Once the classes are specified in this way, we 
can find the probability of the data having come from such 
a set of classes by simple probability formulas. Finding 
the best classification is then a matter of varying the class 
parameters-for instance, adjusting the mean and stan- 
dard deviation-until they are maximally predictive of the 
data. Classification has long been studied in these terms 
as the theory of finite mixtures. Everitt and Hand [1981] 
provide an excellent review containing over 200 references. 

AutoClass is an implementation of the Bayesian solution 
to the finite mixture problem. We begin with an uninfor- 
mative prior probability distribution over the classification 
parameters (which expresses our a priori ignorance of the 
parameters) and then update this distribution by using 
the information in the database to calculate the posterior 
probability distribution of the parameters. This posterior 
distribution allows us to determine both the most probable 
classification parameters for a given number of classes as 
well as the most probable number of classes present in the 
data. From this information it is also possible to calcu- 
late the probability that each object is a member of each 
class. Note that it is possible to determine the parameters 
of strongly overlapping classes accurately, although very 
few of the objects can be assigned to any class with high 
probability. 

In addition to providing the database, the user selects 
an appropriate class model. For real valued variables, for 
example, the default model is a Gaussian distribution. Au- 
toClass then calculates the optimal values of the parame- 
ters for a given number of classes and the probability that 
each number of classes is actually present in the data. As 
final output, AutoClass provides the most probable num- 
ber of classes, the most probable values of the classification 
parameters for that number of classes, and also the prob- 
ability of membership of each object in each class. 

In order to make any headway into classification, and 
indeed to give meaning to the term, one must define what 
one means by a class. We do so mathematically through 
the class model functions. By committing ourselves to spe- 
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cific functions, we are not assuming the functions describe 
the actual classes any more than the act of looking for 
classes assumes that classes exist. Rather, we are setting 
forth precisely the question we wish to ask: “What classes 
of the given form can be found in the data?” 

The current AutoClass program (AutoClass II) looks 
for classes in which attributes vary independently within 
a class. It models real-valued attributes with Gaussian 
probability distributions and discrete attributes with lists 
of outcome probabilities. We phrased our classification 
question in these terms to simplify implementation, with 
the realization that ignoring attribute dependence ne- 
glects potentially useful information. Working within this 
framework, we have found meaningful structure in many 
databases, as Section 4 attests. 

AutoClass uses a Bayesian variant of Dempster and 
Laird’s EM Algorithm [Dempster et al., 19771 to search 
for the maximum of the posterior distribution of the clas- 
sification parameters and approximates the distribution 
about this maximum. AutoClass also includes heuristic 
techniques for avoiding local maxima in the search. Al- 
though local maxima present a difficult problem in prac- 
tice, they are an algorithmic concern and require no ad- 
ditional theory. Details of the Bayesian theory of finite 
mixtures appear in the Appendix. The AutoClass algo- 
rithm is described thoroughly by Cheeseman et a!. [19SS] 

3 Discussion 
It is important to point out that we do not assume that the 
classification parameters or the number of classes are “ran- 
dom variables.” They have definite but unknown values 
which we must infer. The prior distributions used do not 
represent a frequency distribution of the parameters, but 
rather the state of knowledge of the observer (in this case 
AutoClass) before the data are observed. Thus there can 
be no “true values of the prior probabilities” as Duda and 
Hart suggest [1973], since prior probabilities are a function 
of the observer, not of the world. Although Cox gave the 
first full explanation of this issue in 1946 [Cox, 19461, it 
remains a source of confusion t0day.l 

Bayesian methods have often been rejected due to their 
use of prior distributions, because of the belief that priors 
taint the analysis with personal biases. It is possible to use 
priors that are uninformative and completely impersonal2 
These are invariant to any change of scale or origin, so in 
no way do they express any a priori opinions or biases. 
Rather, they express complete a priori ignorance of the 
parameters (as defined by specific invariance criteria). 

On the other hand, the ability to incorporate prior 
knowledge can be of great use when such information is 
available. Informative priors are often mathematically sim- 
pler than their uninformative brethren, and for this reason 
AutoClass uses a weak, informative prior which introduces 
little bias. AutoClass could be easily extended to include 
strong prior knowledge, if it is available, whereas many 

‘See Jaynes [1986] for a recent discussion of the nature of 
Bayesian inference and its relationship to other methods of sta- 
tistical inference. 

2See Jaynes [1968] for a lucid description of uninformative 
priors. 

non-Bayesian approaches would have difficulty incorporat- 
ing such knowledge smoothly. 

AutoClass can be used to learn from examples. If the 
program is given a set of objects pre-classified by a teacher, 
it can form descriptions of the specified classes and use 
these to classify new objects. Furthermore, it can estimate 
missing parameter values from its classification based on 
the values present. Thus supervised learning can be com- 
bined with unsupervised learning in the same system, using 
the same theory. 

Development of AutoClass III is underway. It will in- 
clude exponential distributions for real attributes and mul- 
tivariate distributions that will make use of dependence 
between attributes. We are also developing the theory for 
automatic selection of class distributions, allowing the sys- 
tem to take advantage of increased model complexity when 
the data justify estimation of the additional parameters. 
Thus, simple theories (with correspondingly few parame- 
ters) can give way to more complex theories as the amount 
of data increases. The theory for such model selection is 
very similar to the selection of the number of classes. 

4 Resullts 

AutoClass has classified data supplied by researchers ac- 
tive in various domains and has yielded some new and 
intriguing results: 

e Iris Database 

Fisher’s data on three species of iris [Fisher, 19361 are 
a classic test for classification systems. AutoClass dis- 
covers the three classes present in the data with very 
high confidence, although not all of the cases can be as- 
signed to their classes with certainty. Wolfe’s NORMIX 
and NORMAP [Wolfe, 19701 both incorrectly found four 
classes, and Dubes’s MH index [Dubes, 19871 offers only 
weak evidence for three clusters. 

* Soybean Disease Database 

AutoClass found the four known classes in Stepp’s soy- 
bean disease data, providing a comparison with Michalski’s 
CLUSTER/2 system [Michalski and Stepp, 1983a]. Auto- 
Class’s class assignments exactly matched Michalski’s- 
each object belonged overwhelmingly to one class, indi- 
cating exceptionally well separated classes for so small a 
database (47 cases, 35 attributes). 

o Horse Colic Database 

AutoClass analyzed the results of 50 veterinary tests on 
259 horses and extracted classes which provided reliable 
disease diagnoses, although almost 40% of the data were 
missing. 

e Infrared Astronomy Database 

The Infrared Astronomical Satellite tabulation of stel- 
lar spectra is not only the largest database AutoClass has 
assayed (5,425 cases, 94 attributes) but the least thor- 
oughly understood by domain experts. AutoClass’s results 
differed significantly from previous analyses. Preliminary 
evaluations of the new classes by infrared astronomers in- 
dicate that the hitherto unknown classes have important 
physical meaning. The AutoClass infrared source classifi- 
cation is the basis of a new star catalog to appear shortly. 
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We are actively collecting and analyzing other databases 
which seem appropriate for classification, including an 
AIDS database and a second infrared spectral database. 

ther 

Several different communities are interested in automatic 
classification, and we compare AutoClass to some existing 
methods: 

o Maximum Likelihood Mixture Separation 

AutoClass is very similar to the maximum likelihood 
methods used to separate finite mixtures as described in 
the statistical pattern recognition literature. The math- 
ematical statement of the problem is identical to that 
discussed by Duda and Hart [1973] and by Everitt and 
Hand [1981]. The primary difference lies in AutoClass’s 
Bayesian formulation, which removes singularities from the 
search space and provides a more effective method for de- 
termining the number of classes than existing methods 
based on hypothesis testing. A more detailed compari- 
son of AutoClass to maximum likelihood methods is given 
by Cheeseman et a!. [1988] 

0 Cluster Analysis 

Cluster analysis and AutoClass’s finite mixture separa- 
tion differ fundamentally in their goals. Cluster analysis 
seeks classes which are groupings of the data points, defini- 
tively assigning points to classes; AutoClass seeks descrip- 
tions of classes that are present in the data, and never 
assigns points to classes with certainty. 

The other major difference lies in the definition of a 
class. The AutoClass method defines a class explicitly with 
model functions and then derives the optimal class sep- 
aration criterion using Bayes’s theorem. Cluster analysis 
techniques define a class indirectly by specifying a criterion 
for evaluating clustering hypotheses, such as maximizing 
some form of intra-class similarity. 

8 Conceptual Clustering 

Both AutoClass and conceptual clustering methods seek 
descriptions of the clusters rather than a simple parti- 
tioning of the objects. The main difference between the 
methods is the choice of concept language: AutoClass uses 
a probabilistic description of the classes, while Michalski 
and Stepp [1983b] use a logical description language. The 
logic-based approach is particularly well suited to logically 
“clean” applications, whereas AutoClass is effective even 
when the data are noisy or the classes overlap substantially. 

Conceptual clustering techniques specify their class def- 
initions with a “clustering quality criterion” such as “cate- 
gory utility.” [Fisher, 19871 As with cluster analysis, these 
criteria impose constraints on what clusterings are desired 
rather than on the nature of the actual clusters. This may 
reflect a difference in goals since Langley’s CLASSIT [Lan- 
gley et al., 19871 and Michalski’s CLUSTER/2 [Michalski 
and Stepp, 1983a] programs seek explicitly to emulate hu- 
man classification, which is a more difficult problem than 
AutoClass addresses. 

o Minimum Message Length Method 

A classification method based on minimum total mes- 
sage length (MML) was introduced 20 years ago [Wallace 
and Boulton, 19681 and has been considerably extended 
since then. [Wallace and Freeman, 19871 This method 
searches for the classification that can be encoded in the 
fewest bits, where the encoded message consists of two 
parts: the information required to describe the class pa- 
rameters (i.e., the particular classification model) and the 
information required to encode the data given the pa- 
rameters. Because this method tries to minimize the to- 
tal message length, there is a built-in tradeoff between 
the complexity of the model (the information required 
to describe the classes) and the fit to the data (the in- 
formation required to encode the data given the classes). 
This is the same tradeoff given by the Bayesian approach, 
and in fact the minimum message length criterion is a 
very good approximation to the Bayesian criterion. See 
Georgeff [Georgeff and Wallace, 19841 for details. Note 
that the MML method requires the parameters to be esti- 
mated to an optimal accuracy that depends on the data. 

We have developed a practical and theoretically sound 
method for determining the number of classes present in 
a mixture, based solely on Bayes’s theorem. Its rigorous 
mathematical foundation permits the assumptions and def- 
initions involved to be stated clearly and analyzed care- 
fully. The AutoClass method determines the number of 
classes better than existing mixture separation methods 
do and also compares favorably with cluster analysis and 
conceptual clustering methods. 

This appendix presents the Bayesian theory of finite mix- 
tures, the mathematical basis of the AutoClass algorithm. 

In the theory of finite mixtures, each datum is assumed 
to be drawn from one of m mutually exclusive and exhaus- 
tive classes. Eazh class is described by a class distribution, 
p(zi ] zi E Cj,6j), which g ives the probability distribution 
of the attributes of a datum if it were known to belong 
to the class Cj. These class distributions are as3umed to 
be parameterized by a class parameter vector, t9j, which 
for a normal distribution would consist of the class mean, 
pj, and variance, 0 j. The probability of an object being 
drawn from class j is called the class probability or mix- 
ing proportion, rj. Thus, the probability distribution of a 
datum’drawn from a mixture distribution is 

p(xj 16, ii, m) = gxjP(.i 1 Xi E Cj,&). (1) 
j=l 

We assume that the data are drawn from an exchange- 
able (static) process-that is, the data are unordered and 
are assumed to be independent given the model. Thus, the 
joint probability distribution of a set of n data drawn from 
a finite mixture is 

n 

p(Z 16, ii, m) = ~(xi I e’, +, m>. (2) 
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For a given value of the class parameters, we can cal- 
culate the probability that an ob.ject belongs to each class 
using Bay&‘s theorem, 

p(Xj E Cj 1 Xi,if9iirm) = rj p(Xi 1 Xi E Cj9 gj) 

~(xi I e', +, m) 
- (3) 

Thus, the classes are “fuzzy” in the sense that even with 
perfect knowledge of an object’s attributes, it will only be 
possible to determine the probability that it is a member 
of a given class. 

We break the problem of identifying a finite mixture into 
two parts: determining the classification parameters for a 
given number of classes, and determining the number of 
classes. Rather than seeking an estimator of ths classifi- 
cation parameters (the class parameter vectors, 8, and the 
class probabilities, i;), we seek their full posterior probabil- 
ity distribution. The posterior distribution is proportional 
to the product of the prior distribution of the parameters, 
p(e’, ii I m), and the likelihood function, p(Z I e’, ii, m): 

p(e’, ii IiT, m) = de’, +? I m) ~(2 I e’, 3, m) 
PC2 I 4 , (4) 

where p(Z I m) is simply the normalizing 
posterior distribution, and is given by 

constant of the 

p(~ 1 m) = J Jp(t~, 2 I m) p(Z 1 e’, +, m) d’dz. (5) 

To solve the second half of the classification problem (de- 
termining the number of classes) we calculate the posterior 
distribution of the number of classes, m. This is propor- 
tional to the product of the prior distribution, p(m), and 
the pseudo-likelihood function, p(Z I m), 

P(m 1 2) = Pb-4 P@ I 4 
P(q * 

The pseudo-likelihood function is just the normalizing con- 
stant of the posterior distribution of the classification pa- 
rameters (Equation 5). Thus, to determine the number 
of classes, we first determine the posterior distribution of 
the classification parameters for each possible number of 
classes. We then marginalize (integrate) out the classi- 
fication parameters from the estimation of the number of 
classes-in effect, treating them as “nuisance” parameters. 

In general, the marginalization cannot be performed in 
closed form, so AutoClass searches for the maximum of 
the posterior distribution of the classification parameters 
(using a Bayesian variant of Dempster and Laird’s EM 
Algorithm [Dempster et al., 19771) and forms an approxi- 
mation to the distribution about this maximum. Including 
the search, the algorithm is roughly linear in the amount of 
data multiplied by the number of classes. See Cheeseman 
et al. [1988] for full details of the AutoClass algorithm. 

Note that in finding the posterior probability distribu- 
tion over the number of classes, we are comparing models 
with different numbers of parameters. Maximum likeli- 
hood methods always favor models with more parameters, 
because these extra parameters can be adjusted to fit the 
data better. Bayesian model comparison, on the other 
hand, automatically penalizes additional parameters un- 
less they substantially improve the fit to the data. That 

is, Bayesian model comparison has a built-in tradeoff be- 
tween complexity of the model and the fit to the data. In 
the classification model, Equations 5 and 6 give this trade- 
off. In particular the probability in Equation 6 does not 
automatically grow with additional classes, because the 
additional classes introduce additional parameters and so 
increase the dimensionality of the integral in the denomina- 
tor (Equation 5). Unless the likelihood inside the integral 
is strongly increased by these additional parameters, the 
increased dimensionality will lower the total probability. 
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