
1

1

Planning as Satisfiability

* Based on slides by Alan Fern, Stuart Russell and Dana Nau

hPlanning as propositional satisfiability

2

Architecture of a SAT-based Planner

Compiler

(encoding)

satisfying

model
Plan

Increment plan length

If unsatisfiable

Problem 

Description

• Init State

• Goal

• Actions

CNF
Simplifier

(polynomial 

inference)

Solver

(SAT engine/s)
Decoder

CNF

Propositional formula in conjunctive 
normal form (CNF)



2

3

Propositional Satisfiability

hA formula is satisfiable if it is true in some 
model

5e.g.   A∨ B, C

hA formula is unsatisfiable if it is true in no 

models

5e.g.   A ∧¬A

hTesting satisfiability of CNF formulas is a 
famous NP-complete problem  

4

Propositional Satisfiability

hMany problems (such as planning) can be 
naturally encoded as instances of satisfiability

hThus there has been much work on 
developing powerful satisfiability solvers 

5 these solvers work amazingly well in practice (we 
will touch on some later)



3

5

Encoding Planning as Satisfiability: 
Basic Idea

h Bounded planning problem (P,n):
5 P is a planning problem; n is a positive integer

5 Find a solution for P of length n

h Create a propositional formula that represents:
5 Initial state

5 Goal 

5 Action Dynamics

for n time steps

h We will define the formula for (P,n) such that:
1)  any model (i.e. satisfying truth assignment) of the

formula represent a solution to (P,n) 
2)  if (P,n) has a solution then the formula is satisfiable

6

Encoding Planning Problems

hWe can encode (P,n) so that we consider either 
layered plans or totally ordered plans
5 an advantage of considering layered plans is that fewer time steps 

are necessary (i.e. smaller n translates into smaller formulas) 

5 for simplicity we first consider totally-ordered plans

hEncode (P,n) as a formula Φ such that

〈a0, a1, …, an–1〉 is a solution for (P,n)

if and only if

Φ can be satisfied in a way that makes the fluents
a0, …, an–1 true

hΦ will be conjunction of many other formulas …



4

7

Formulas in ΦΦΦΦ

h Formula describing the initial state: (let E be the set of 

possible facts in the planning problem)

/\{e0 | e ∈ s0}  ∧ /\{¬e0 | e ∈ E – s0 }

Describes the complete initial state (both positive and negative fact)

5 E.g.      on(A,B,0) ∧ ¬on(B,A,0)

h Formula describing the goal: (G is set of goal facts)

/\{en | e ∈ G}

says that the goal facts must be true in the final state at timestep n

5 E.g.      on(B,A,n)

h Is this enough? 

5 Of course not. The formulas say nothing about actions.

8

Formulas in ΦΦΦΦ
h For every action a and timestep i, formula describing what 

fluents must be true if a were the i’th step of the plan:

5 ai ⇒ /\ {ei | e ∈ Precond(a)}, a’s preconditions must be true   

5 ai ⇒ /\ {ei+1 |  e ∈ ADD(a)}, a’s ADD effects must be true in i+1

5 ai ⇒ /\ {¬ei+1 |  e ∈ DEL(a)}, a’s DEL effects must be false in i+1

h Complete exclusion axiom:
5 For all actions a and b and timesteps i, formulas saying a and b can’t 

occur at the same time

¬ ai ∨ ¬ bi

5 this guarantees there can be only one action at a time

h Is this enough?
5 The formulas say nothing about what happens to facts if they are not 

effected by an action

5 This is known as the frame problem



5

9

Frame Axioms

h Frame axioms:

5 Formulas describing what doesn’t change between steps i and i+1

h Several ways to write these (your book shows another way)

5 Here I show a alternative that typically works best in practice

h explanatory frame axioms

5 One axiom for every possible fact e at every timestep i

5 Says that if e changes truth value between si and si+1, 

then the action at step i must be responsible:

¬ei ∧ ei+1 ⇒ V{ai | e in ADD(a)}

If e became true then some action must have added it

ei ∧ ¬ei+1 ⇒ V{ai | e in DEL(a)}

If e became false then some action must have deleted it

10

Example
hPlanning domain:

5one robot r1

5 two adjacent locations l1, l2

5one operator (move the robot)

hEncode (P,n) where n = 1

5 Initial state: {at(r1,l1)}

Encoding: at(r1,l1,0) ∧ ¬at(r1,l2,0)

5Goal: {at(r1,l2)}

Encoding: at(r1,l2,1)

5Action Schema: see next slide



6

11

Example (continued)

hSchema: move(r, l, l’)
PRE: at(r,l)

ADD: at(r,l’)

DEL: at(r,l)

Encoding: (for actions move(r1,l1,l2) and
move(r1,l2,l1) at time step 0)

move(r1,l1,l2,0) ⇒ at(r1,l1,0)

move(r1,l1,l2,0) ⇒ at(r1,l2,1)

move(r1,l1,l2,0) ⇒ ¬at(r1,l1,1)

move(r1,l2,l1,0) ⇒ at(r1,l2,0)

move(r1,l2,l1,0) ⇒ at(r1,l1,1)

move(r1,l2,l1,0) ⇒ ¬at(r1,l2,1)

12

Example (continued)
h Schema: move(r, l, l’)

PRE: at(r,l)

ADD: at(r,l’)

DEL: at(r,l)

h Complete-exclusion axiom:
¬move(r1,l1,l2,0) ∨ ¬move(r1,l2,l1,0)

h Explanatory frame axioms:
¬at(r1,l1,0) ∧ at(r1,l1,1) ⇒ move(r1,l2,l1,0)

¬at(r1,l2,0) ∧ at(r1,l2,1) ⇒ move(r1,l1,l2,0)

at(r1,l1,0) ∧ ¬at(r1,l1,1) ⇒ move(r1,l1,l2,0)

at(r1,l2,0) ∧ ¬at(r1,l2,1) ⇒ move(r1,l2,l1,0)



7

13

Complete Formula for (P,1)

[ at(r1,l1,0) ∧ ¬at(r1,l2,0) ] ∧

at(r1,l2,1) ∧

[ move(r1,l1,l2,0) ⇒ at(r1,l1,0) ] ∧

[ move(r1,l1,l2,0) ⇒ at(r1,l2,1) ] ∧

[ move(r1,l1,l2,0) ⇒ ¬at(r1,l1,1) ] ∧

[ move(r1,l2,l1,0) ⇒ at(r1,l2,0) ] ∧

[ move(r1,l2,l1,0) ⇒ at(r1,l1,1) ] ∧

[ move(r1,l2,l1,0) ⇒ ¬at(r1,l2,1) ] ∧

[ ¬move(r1,l1,l2,0) ∨ ¬move(r1,l2,l1,0) ] ∧

[ ¬at(r1,l1,0) ∧ at(r1,l1,1) ⇒ move(r1,l2,l1,0) ] ∧

[ ¬at(r1,l2,0) ∧ at(r1,l2,1) ⇒ move(r1,l1,l2,0) ] ∧

[ at(r1,l1,0) ∧ ¬at(r1,l1,1) ⇒ move(r1,l1,l2,0) ] ∧

[ at(r1,l2,0) ∧ ¬at(r1,l2,1) ⇒ move(r1,l2,l1,0) ] 

Convert to CNF and give to SAT solver.

14

Extracting a Plan

hSuppose we find an assignment of truth 

values that satisfies Φ.

5This means P has a solution of length n

hFor i=0,…,n-1, there will be exactly one action 
a such that ai = true

5This is the i’th action of the plan.

hExample (from the previous slides):

5 Φ can be satisfied with move(r1,l1,l2,0) = true

5Thus 〈move(r1,l1,l2,0)〉 is a solution for (P,0)

g It’s the only solution - no other way to satisfy Φ



8

15

Supporting Layered Plans

hComplete exclusion axiom:
5For all actions a and b and time steps i include the 

formula ¬ ai ∨ ¬ bi

5 this guaranteed that there could be only one 
action at a time

hPartial exclusion axiom: 
5For any pair of incompatible actions (recall from 

Graphplan) a and b and each time step i include 
the formula ¬ ai ∨ ¬ bi

5This encoding will allowed for more than one 
action to be taken at a time step resulting in 
layered plans

5This is advantageous because fewer time steps 
are required (i.e. shorter formulas)

16

Planning Benchmark Test SetPlanning Benchmark Test Set

hExtension of Graphplan test set

hblocks world - up to 18 blocks, 1019 states

h logistics - complex, highly-parallel 
transportation domain.  
Logistics.d:

5 2,165 possible actions per time slot

5 1016 legal configurations (22000 states)

5 optimal solution contains 74 distinct actions over 14 time 
slots

hProblems of this size never previously 
handled by general-purpose planning 
systems



9

17

Scaling Up Logistics Planning

0.01

0.1

1

10

100

1000

10000

rocket.a

rocket.b

log.b
log.a

log.c
log.d

lo
g

 s
o

lu
ti

o
n

 t
im

e

Graphplan

DP

DP/Satz

Walksat

18

What SATPLAN Shows

hGeneral propositional reasoning can 
compete with state of the art specialized 
planning systems

5New, highly tuned variations of DP surprising 

powerful

5Radically new stochastic approaches to SAT 
can provide very low exponential scaling

hWhy does it work?

5More flexible than forward or backward 

chaining

5Randomized algorithms less likely to get 

trapped along bad paths



10

19

Discussion

hHow well does this work?

5Created an initial splash but by itself, not very 

practical without help in choosing good encoding

hHowever combining SatPlan with planning 
graphs can overcome this problem


