Planning as Satisfiability

Planning as propositional satisfiability

* Based on slides by Alan Fern, Stuart Russell and Dana Nau

Propositional Satisfiability

- A formula is satisfiable if it is true in some model
 - ♣ e.g. A∨ B, C
- A formula is unsatisfiable if it is true in no models
 - e.g. A ∧¬A
- Testing satisfiability of CNF formulas is a famous NP-complete problem

3

Propositional Satisfiability

- Many problems (such as planning) can be naturally encoded as instances of satisfiability
- Thus there has been much work on developing powerful satisfiability solvers
 - these solvers work amazingly well in practice (we will touch on some later)

Encoding Planning as Satisfiability: Basic Idea

- Bounded planning problem (*P*,*n*):
 - ♠ P is a planning problem; n is a positive integer
 - ◆ Find a solution for P of length n
- Create a propositional formula that represents:
 - Initial state
 - Goal
 - Action Dynamics

for *n* time steps

- We will define the formula for (*P*,*n*) such that:
 - 1) **any** model (i.e. satisfying truth assignment) of the formula represent a solution to (P,n)
 - 2) if (P,n) has a solution then the formula is satisfiable

5

Encoding Planning Problems

- We can encode (P,n) so that we consider either layered plans or totally ordered plans
 - ♠ an advantage of considering layered plans is that fewer time steps are necessary (i.e. smaller n translates into smaller formulas)
 - ♠ for simplicity we first consider totally-ordered plans
- Encode (P,n) as a formula Φ such that

 $\langle a_0, a_1, ..., a_{n-1} \rangle$ is a solution for (P,n) if and only if

- Φ can be satisfied in a way that makes the fluents $a_0, ..., a_{n-1}$ true
- ullet Φ will be conjunction of many other formulas ...

Formulas in Φ

 Formula describing the <u>initial state</u>: (let E be the set of possible facts in the planning problem)

```
\bigwedge\{e_0 \mid e \in s_0\} \land \bigwedge\{\neg e_0 \mid e \in E - s_0\}
```

Describes the complete initial state (both positive and negative fact)

```
\blacktriangle E.g. on(A,B,0) \land ¬on(B,A,0)
```

• Formula describing the **goal**: (*G* is set of goal facts)

```
\bigwedge \{e_n \mid e \in G\}
```

says that the goal facts must be true in the final state at timestep n

- \triangle E.g. on(B,A,n)
- Is this enough?
 - Of course not. The formulas say nothing about actions.

7

Formulas in Φ

- For every action *a* and timestep *i*, formula describing what fluents must be true if *a* were the *i* th step of the plan:
 - $\mathbf{a}_i \Rightarrow \Lambda \{e_i \mid e \in \mathsf{Precond}(a)\}, a's \mathsf{preconditions} \mathsf{must} \mathsf{be} \mathsf{true}$
 - $\stackrel{\bullet}{a_i} \Rightarrow \bigwedge \{e_{i+1} \mid e \in ADD(a)\}, \text{ a's ADD effects must be true in i+1}$
 - $\stackrel{\bullet}{a_i} \Rightarrow \bigwedge \{ \neg e_{i+1} \mid e \in DEL(a) \}$, a's DEL effects must be false in i+1
- Complete exclusion axiom:
 - For all actions a and b and timesteps i, formulas saying a and b can't occur at the same time

$$\neg a_i \lor \neg b_i$$

- this guarantees there can be only one action at a time
- Is this enough?
 - The formulas say nothing about what happens to facts if they are not effected by an action
 - ↑ This is known as the frame problem

Frame Axioms

- Frame axioms:
 - ► Formulas describing what *doesn't* change between steps *i* and *i*+1
- Several ways to write these (your book shows another way)
 - Here I show a alternative that typically works best in practice
- explanatory frame axioms
 - ◆ One axiom for every possible fact e at every timestep i
 - Says that if e changes truth value between s_i and s_{i+1} , then the action at step i must be responsible:

$$\neg e_i \land e_{i+1} \Rightarrow V\{a_i \mid e \text{ in ADD}(a)\}$$

If e became true then some action must have added it

$$e_i \wedge \neg e_{i+1} \Rightarrow V\{a_i \mid e \text{ in DEL}(a)\}$$

If e became false then some action must have deleted it

9

Example

- Planning domain:
 - ◆ one robot r1
 - two adjacent locations I1, I2
 - one operator (move the robot)
- Encode (P,n) where n=1
 - ▲ Initial state: {at(r1,l1)}

Encoding: $at(r1,l1,0) \land \neg at(r1,l2,0)$

▲ Goal: {at(r1,l2)}Encoding: at(r1,l2,1)

▲ Action Schema: see next slide

Example (continued)

```
    Schema: move(r, I, I')
        PRE: at(r,I)
        ADD: at(r,I')
        DEL: at(r,I)
    Encoding: (for actions move(r1,I1,I2) and move(r1,I2,I1) at time step 0)
        move(r1,I1,I2,0) ⇒ at(r1,I1,0)
```

move(r1,I1,I2,0) \Rightarrow at(r1,I1,0) move(r1,I1,I2,0) \Rightarrow at(r1,I2,1) move(r1,I1,I2,0) \Rightarrow at(r1,I1,1) move(r1,I2,I1,0) \Rightarrow at(r1,I2,0) move(r1,I2,I1,0) \Rightarrow at(r1,I1,1)

 $move(r1,l2,l1,0) \Rightarrow \neg at(r1,l2,1)$

1

Example (continued)

Schema: move(r, I, I')
 PRE: at(r,I)
 ADD: at(r,I')
 DEL: at(r,I)

· Complete-exclusion axiom:

```
\negmove(r1,l1,l2,0) \lor \negmove(r1,l2,l1,0)
```

Explanatory frame axioms:

```
\negat(r1,l1,0) \land at(r1,l1,1) \Rightarrow move(r1,l2,l1,0) \negat(r1,l2,0) \land at(r1,l2,1) \Rightarrow move(r1,l1,l2,0) at(r1,l1,0) \land \negat(r1,l1,1) \Rightarrow move(r1,l1,l2,0) at(r1,l2,0) \land \negat(r1,l2,1) \Rightarrow move(r1,l2,l1,0)
```

Complete Formula for (P,1)

```
 \begin{array}{l} \left[ \ at(r1,l1,0) \land \neg at(r1,l2,0) \ \right] \land \\ at(r1,l2,1) \land \\ \left[ \ move(r1,l1,l2,0) \Rightarrow at(r1,l1,0) \ \right] \land \\ \left[ \ move(r1,l1,l2,0) \Rightarrow at(r1,l2,1) \ \right] \land \\ \left[ \ move(r1,l1,l2,0) \Rightarrow \neg at(r1,l1,1) \ \right] \land \\ \left[ \ move(r1,l2,l1,0) \Rightarrow at(r1,l2,0) \ \right] \land \\ \left[ \ move(r1,l2,l1,0) \Rightarrow at(r1,l1,1) \ \right] \land \\ \left[ \ move(r1,l2,l1,0) \Rightarrow \neg at(r1,l2,1) \ \right] \land \\ \left[ \ \neg move(r1,l2,l1,0) \Rightarrow \neg at(r1,l2,1) \ \right] \land \\ \left[ \ \neg at(r1,l1,0) \land at(r1,l1,1) \Rightarrow move(r1,l2,l1,0) \ \right] \land \\ \left[ \ \neg at(r1,l2,0) \land \neg at(r1,l2,1) \Rightarrow move(r1,l1,l2,0) \ \right] \land \\ \left[ \ at(r1,l2,0) \land \neg at(r1,l2,1) \Rightarrow move(r1,l2,l1,0) \ \right] \land \\ \left[ \ at(r1,l2,0) \land \neg at(r1,l2,1) \Rightarrow move(r1,l2,l1,0) \ \right] \land \\ \left[ \ at(r1,l2,0) \land \neg at(r1,l2,1) \Rightarrow move(r1,l2,l1,0) \ \right] \land \\ \end{array}
```

Convert to CNF and give to SAT solver.

13

Extracting a Plan

- Suppose we find an assignment of truth values that satisfies Φ.
 - ↑ This means *P* has a solution of length *n*
- For i=0,...,n-1, there will be exactly one action a such that a_i = true
 - ◆ This is the ith action of the plan.
- Example (from the previous slides):
 - Φ can be satisfied with move(r1,l1,l2,0) = true
 - ↑ Thus $\langle move(r1,l1,l2,0) \rangle$ is a solution for (P,0)
 - ullet It's the only solution no other way to satisfy Φ

Supporting Layered Plans

- Complete exclusion axiom:
 - ► For <u>all</u> actions a and b and time steps i include the formula $\neg a_i \lor \neg b_i$
 - this guaranteed that there could be only one action at a time
- Partial exclusion axiom:
 - For any pair of incompatible actions (recall from Graphplan) a and b and each time step i include the formula ¬ a_i ∨ ¬ b_i
 - This encoding will allowed for more than one action to be taken at a time step resulting in layered plans
 - This is advantageous because fewer time steps are required (i.e. shorter formulas)

15

Planning Benchmark Test Set

- Extension of Graphplan test set
- blocks world up to 18 blocks, 10¹⁹ states
- logistics complex, highly-parallel transportation domain.

Logistics.d:

- ↑ 10¹⁶ legal configurations (2²⁰⁰⁰ states)
- optimal solution contains 74 distinct actions over 14 time slots
- Problems of this size never previously handled by general-purpose planning systems

What SATPLAN Shows

- General propositional reasoning can compete with state of the art specialized planning systems
 - New, highly tuned variations of DP surprising powerful
 - Radically new stochastic approaches to SAT can provide very low exponential scaling
- · Why does it work?
 - More flexible than forward or backward chaining
 - Randomized algorithms less likely to get trapped along bad paths

Discussion

- How well does this work?
 - Created an initial splash but by itself, not very practical without help in choosing good encoding
- However combining SatPlan with planning graphs can overcome this problem