Planning as Satisfiability

* Planning as propositional satisfiability

* Based on slides by Alan Fern, Stuart Russell and Dana Nau

Architecture of a SAT-based Planner

Propositional formula in conjunctive

normal form (CNF)

/

Problem

Dpserpter | camper

. Goal (encoding)

* Actions 2
Plan <———| Decoder

CNF Simplifigr
(polynomial
inference)
Increment plan length
. If unsatisfiable CNF
satisfying
model Solver

(SAT engine/s)

Propositional Satisfiability

* A formula is satisfiable if it is true in some
model
~e.g. AvB, C

* A formula is unsatisfiable if it is true in no
models
“e.q. A A—A

* Testing satisfiability of CNF formulas is a
famous NP-complete problem

Propositional Satisfiability

* Many problems (such as planning) can be
naturally encoded as instances of satisfiability

* Thus there has been much work on
developing powerful satisfiability solvers

~ these solvers work amazingly well in practice (we
will touch on some later)

Encoding Planning as Satisfiability:
Basic Idea

* Bounded planning problem (P,n):
~ Pis a planning problem; nis a positive integer
~ Find a solution for P of length n

* Create a propositional formula that represents:
~ Initial state
~ Goal
« Action Dynamics

for ntime steps

* We will define the formula for (P,n) such that:
1) any model (i.e. satisfying truth assignment) of the
formula represent a solution to (P,n)
2) if (P,n) has a solution then the formula is satisfiable

Encoding Planning Problems

* We can encode (P,n) so that we consider either
layered plans or totally ordered plans

~ an advantage of considering layered plans is that fewer time steps
are necessary (i.e. smaller n translates into smaller formulas)

~ for simplicity we first consider totally-ordered plans

* Encode (P,n) as a formula & such that
(ay, a4, ..., @,4) is a solution for (P,n)
if and only if

® can be satisfied in a way that makes the fluents
ay, ..., d,1 true

* ® will be conjunction of many other formulas ...

Formulas in ®

* Formula describing the initial state: (let E be the set of
possible facts in the planning problem)

Ne, [ee sg} A N—e, [ee E-sy}
Describes the complete initial state (both positive and negative fact)

~ E.g. on(A,B,0) A—on(B,A,0)

* Formula describing the goal: (G is set of goal facts)

Ne, |ee G}
says that the goal facts must be true in the final state at timestep n
~ Eg. on(B,An)

* |s this enough?
~ Of course not. The formulas say nothing about actions.

Formulas in ®

* For every action a and timestep /, formula describing what
fluents must be true if a were the 7th step of the plan:

~ a; = N{e, | ee Precond(a)}, as preconditions must be true
~ a = Nle,, | ec ADD(a)}, a's ADD effects must be true in i+1
~ a = N\{-e,, | ec DEL(a)}, a's DEL effects must be false in i+1

* Complete exclusion axiom:
~ For all actions a and b and timesteps i, formulas saying a and b can’t
occur at the same time
— ai \| bi
~ this guarantees there can be only one action at a time

* |s this enough?
~ The formulas say nothing about what happens to facts if they are not
effected by an action
« This is known as the frame problem

Frame Axioms

* Frame axioms:
~ Formulas describing what doesn’t change between steps jiand i+1

* Several ways to write these (your book shows another way)
~ Here | show a alternative that typically works best in practice

* explanatory frame axioms
~ One axiom for every possible fact e at every timestep i
~ Says that if e changes truth value between s;and s
then the action at step /i must be responsible:

= V{a, /e in ADD(a)}
If e became true then some action must have added it
= V{a, /e in DEL(a)}

If e became false then some action must have deleted it

i+1s

i+1

e,-/\—|e

i+1

Example

* Planning domain:
« one robot r1
~ two adjacent locations I1, 12
~ one operator (move the robot)

* Encode (P,n) where n=1

~ Initial state: {at(r1,11)}
Encoding: at(r1,11,0) A —at(r1,12,0)

~ Goal: {at(r1,12)}
Encoding: at(r1,12,1)

~ Action Schema: see next slide

10

Example (continued)

* Schema: move(r, I, I’)
PRE: at(r,)
ADD: at(r,I')
DEL: at(r,)

Encoding: (for actions move(r1,I1,12) and
move(r1,I2,11) at time step 0)
move(r1,I1,12,0) = at(r1,11,0)
move(ri,l1,12,0) = at(r1,I12,1)
move(r1,|1,12,0) = —at(r1,11,1)

move(r1,l2,11,0) = at(r1,12,0)
move(r1,12,11,0) = at(r1,11,1)
move(r1,12,I11,0) = —at(r1,12,1)

11

Example (continued)

* Schema: move(r, |, I
PRE: at(r,l)
ADD: at(r,I’)
DEL: at(r,l)

* Complete-exclusion axiom:
—move(ri,I1,12,0) v —=move(r1,12,11,0)

* Explanatory frame axioms:
—at(r1,1,0) A at(r1,l11,1) = move(r1,I2,11,0)
—at(r1,12,0) A at(r1,12,1) = move(r1,l1,12,0)
at(r1,I11,0) A —at(r1,I11,1) = move(ri,I1,12,0)
at(r1,12,0) A —at(r1,12,1) = move(ri,I2,11,0)

12

Complete Formula for (P,1)

[at(r1,11,0) A —at(r1,12,0)] A
at(r1,12,1) A

[move(r1,l1,12,0) = at(r1,I11,0)] A
[move(r1,l1,12,0) = at(r1,12,1)] A
[move(r1,i1,12,0) = —at(r1,l1,1)] A
[move(r1,12,11,0) = at(r1,12,0)] A
[move(r1,12,11,0) = at(r1,I11,1)] A

[move(r1,12,11,0) = —at(r1,12,1)] A
[=move(r1,I1,12,0) v —move(r1,|2,I11,0)] A

[—at(r1,11,0) A at(r1,I11,1) = move(r1,I12,11,0)] A
[—at(r1,12,0) A at(r1,12,1) = move(r1,I1,12,0)] A
[at(r1,11,0) A —at(r1,1,1) = move(r1,I1,12,0)] A
[at(r1,l12,0) A —at(r1,12,1) = move(r1,I2,11,0)]

Convert to CNF and give to SAT solver.

13

Extracting a Plan

* Suppose we find an assignment of truth
values that satisfies &.
« This means P has a solution of length n

* For i=0,...,n-1, there will be exactly one action
asuch that g, = true
~ This is the rth action of the plan.

* Example (from the previous slides):
~ @ can be satisfied with move(r1,I1,12,0) = true
~ Thus (move(r1,I1,12,0)) is a solution for (P,0)
= It’s the only solution - no other way to satisfy ®

14

Supporting Layered Plans
* Complete exclusion axiom:

~ For all actions a and b and time steps / include the

formula—a;, v — b,

« this guaranteed that there could be only one
action at a time

* Partial exclusion axiom:

~ For any pair of incompatible actions (recall from
Graphplan) a and b and each time step i/ include
the formula — a;, v — b,

~ This encoding will allowed for more than one
action to be taken at a time step resulting in
layered plans

~ This is advantageous because fewer time steps
are required (i.e. shorter formulas)

15

Planning Benchmark Test Set

* Extension of Graphplan test set
* blocks world - up to 18 blocks, 101° states

* logistics - complex, highly-parallel
transportation domain.
Logistics.d:
~ 2,165 possible actions per time slot
~ 10¢ legal configurations (22000 states)

~ optimal solution contains 74 distinct actions over 14 time
slots

* Problems of this size never previously

handled by general-purpose planning
systems

16

Scaling Up Logistics Planning

10000
1000 —
</l /
100 —e— Graphplan
—=— DP

/ \ ///" —+— DP/Satz
1- A —e— Walksat

log solution time
>

0.01

17

What SATPLAN Shows

* General propositional reasoning can
compete with state of the art specialized
planning systems

~ New, highly tuned variations of DP surprising
powerful

~ Radically new stochastic approaches to SAT
can provide very low exponential scaling

* Why does it work?
~ More flexible than forward or backward
chaining
~ Randomized algorithms less likely to get
trapped along bad paths

18

Discussion

* How well does this work?

~ Created an initial splash but by itself, not very
practical without help in choosing good encoding

* However combining SatPlan with planning
graphs can overcome this problem

19

10

