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Reinforcement learning

• We want to learn the control policy:

• We see examples of x (but outputs a are not given)

• Instead of a we get a feedback (reinforcement, reward) from a 

critic quantifying how good the selected output was 

• The reinforcements may not be deterministic

• Goal: find                       with the best expected reinforcements
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Gambling example.

• Game: 3 different biased coins are tossed

– The coin to be tossed is selected randomly from the three 

options and I always see which coin I am going to play next 

– I make bets on head or tail and I always wage $1

– If I win I get $1, otherwise I lose my bet

• RL model:

– Input: X – a coin chosen for the next toss, 

– Action: A – choice of head or tail, 

– Reinforcements: {1, -1}

• A policy

Example:
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Coin1      head

Coin2      tail

Coin3      head
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Gambling example.

• RL model:

– Input: X – a coin chosen for the next toss, 

– Action: A – choice of head or tail, 

– Reinforcements: {1, -1}

– A policy

• Learning goal: find 

maximizing future expected profits
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Agent navigation example.

• Agent navigation in the Maze:

– 4 moves in compass directions

– Effects of moves are stochastic – we may wind up in other 

than intended location with non-zero probability

– Objective: reach the goal state in the shortest expected 

time

moves
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Agent navigation example

• The RL model:

– Input: X – position of an agent

– Output: A –a move

– Reinforcements: R

• -1 for each move

• +100 for reaching the goal

– A policy:

• Goal: find the policy maximizing future expected rewards

moves
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Objectives of RL learning

• Objective:

Find a mapping 

That maximizes some combination of future reinforcements 

(rewards) received over time

• Valuation models (quantify how good the mapping is):

– Finite horizon model

– Infinite horizon discounted model

– Average reward
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Exploration vs. Exploitation 

• The (learner) actively interacts with the environment:

– At the beginning the learner does not know anything about 
the environment

– It gradually gains the experience and learns how to react to 
the environment

• Dilemma (exploration-exploitation):

– After some number of  steps, should I select the best 
current choice (exploitation) or try to learn more about the 
environment (exploration)?

– Exploitation may involve the selection of  a sub-optimal 
action and prevent the learning of the optimal choice

– Exploration may spend to much time on trying bad 
currently suboptimal actions
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Effects of actions on the environment

Effect of actions on the environment (next input x to be seen)

• No effect, the distribution over possible x is fixed; action 

consequences (rewards) are seen immediately,

• Otherwise, distribution of x can change; the rewards related to 

the action can be seen with some delay.

Leads to two forms of reinforcement learning:

• Learning with immediate rewards

– Gambling example

• Learning with delayed rewards

– Agent navigation example; move choices affect the state 

of the environment (position changes), a big reward at the 

goal state is delayed
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RL with immediate rewards.

• Game: 3 different biased coins are tossed

– The coin to be tossed is selected randomly from the three 

options and I always see which coin I am going to play next 

– I make bets on head or tail and I always wage $1

– If I win I get $1, otherwise I lose my bet

• RL model:

– Input: X – a coin chosen for the next toss, 

– Action: A – choice of head or tail, 

– Reinforcements: {1, -1}

• Learning goal: find 

maximizing the future expected profits over time
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RL with immediate rewards

• Expected reward

• Immediate reward case:

– Reward for the choice becomes available immediately

– Our choice does not affect environment and thus future 

rewards

– Expected one step reward for input x and the choice a : 
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Learning with delayed rewards

• Actions, in addition to immediate rewards affect the next state 

of the environment and thus indirectly also future rewards

• We need a model to represent environment changes 

• The model we use is called Markov decision process (MDP)

– Frequently used in AI, OR, control theory

– Markov assumption: next state depends on the previous 

state and action, and not states (actions)  in the past
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CS 2710 Foundations of AI

Markov decision process

Formal definition:

• A set of states                                            locations of a robot

• A set of actions                                          move actions

• Transition model                                    

• Reward model
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MDP problem

• We want to find the best policy 

• Value function ( V )  for a policy, quantifies the goodness of 

a policy through, e.g. infinite horizon, discounted model

1. combines future rewards over a trajectory

2. combines rewards for multiple trajectories (through 

expectation-based measures)
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Value of a policy for MDP

• Assume a fixed policy 

• How to compute the value of a policy under infinite horizon 

discounted model?

– For a finite state space– we get a set  of linear equations
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Reinforcement learning of optimal policies

• In the RL framework we do not know the MDP model !!!

• Goal: learn the optimal policy

• Two basic approaches:

– Model based learning

• Learn the MDP model (probabilities, rewards) first

• Solve the MDP afterwards

– Model-free learning

• Learn how to act directly

• No need to learn the parameters of the MDP

– A number of clones of the two in the literature
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Model-based learning

• We need to learn transition probabilities and rewards

• Learning of probabilities

– ML or  Bayesian parameter estimates

– Use counts

• Learning rewards

– Similar to learning with immediate rewards

• Problem: on-line update of the policy

– would require us to solve an MDP after every update !!
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