Communication and Language

Chapter 22

\diamond Communication
\diamond Grammar
\diamond Syntactic analysis
\diamond Problems
\square

Communication

> "Classical" view (pre-1953): language consists of sentences that are true/false (cf. logic)
> "Modern" view (post-1953):
> language is a form of action
> Wittgenstein (1953) Philosophical Investigations
> Austin (1962) How to Do Things with Words
> Searle (1969) Speech Acts
> Why?

Communication

"Classical" view (pre-1953):
language consists of sentences that are true/false (cf. logic)
"Modern" view (post-1953):
language is a form of action
Wittgenstein (1953) Philosophical Investigations
Austin (1962) How to Do Things with Words
Searle (1969) Speech Acts
Why?

Communication

"Classical" view (pre-1953):
language consists of sentences that are true/false (cf. logic)
"Modern" view (post-1953):
language is a form of action
Wittgenstein (1953) Philosophical Investigations Austin (1962) How to Do Things with Words Searle (1969) Speech Acts

Why?

Communication

"Classical" view (pre-1953):
language consists of sentences that are true/false (cf. logic)
"Modern" view (post-1953):
language is a form of action
Wittgenstein (1953) Philosophical Investigations
Austin (1962) How to Do Things with Words
Searle (1969) Speech Acts
Why?
To change the actions of other agents

Speech acts

SITUATION

Speaker \rightarrow Utterance \rightarrow Hearer

Speech acts achieve the speaker's goals:
Inform "There's a pit in front of you"
Query "Can you see the gold?"
Command "Pick it up"
Promise "I'll share the gold with you"
Acknowledge "OK"
Speech act planning requires knowledge of

- Situation
- Semantic and syntactic conventions
- Hearer's goals, knowledge base, and rationality

Stages in communication (informing)

Intention
Generation
Synthesis
Perception $\quad \mathrm{H}$ perceives W^{\prime} in context C^{\prime}
Analysis $\quad \mathrm{H}$ infers possible meanings $P_{1}, \ldots P_{n}$
Disambiguation H infers intended meaning P_{i}
Incorporation H incorporates P_{i} into KB
How could this go wrong?

Stages in communication (informing)

Intention $\quad \mathrm{S}$ wants to inform H that P
Generation $\quad S$ selects words W to express P in context C
Synthesis \quad S utters words W
Perception $\quad \mathrm{H}$ perceives W^{\prime} in context C^{\prime}
Analysis $\quad \mathrm{H}$ infers possible meanings $P_{1}, \ldots P_{n}$
Disambiguation H infers intended meaning P_{i}
Incorporation H incorporates P_{i} into KB
How could this go wrong?

- Insincerity (S doesn't believe P)
- Speech wreck ignition failure
- Ambiguous utterance
- Differing understanding of current context $\left(C \neq C^{\prime}\right)$

Grammar

Vervet monkeys, antelopes etc. use isolated symbols for sentences \Rightarrow restricted set of communicable propositions, no generative capacity (Chomsky (1957): Syntactic Structures)

Grammar specifies the compositional structure of complex messages e.g., speech (linear), text (linear), music (two-dimensional)

A formal language is a set of strings of terminal symbols
Each string in the language can be analyzed/generated by the grammar
The grammar is a set of rewrite rules, e.g.,

$$
\begin{aligned}
& S \rightarrow N P V P \\
& \text { Article } \rightarrow \text { the }|\boldsymbol{a}| \text { an } \mid \ldots
\end{aligned}
$$

Here S is the sentence symbol, $N P$ and $V P$ are nonterminals

Regular: nonterminal \rightarrow terminal $[$ nonterminal $]$

$$
\begin{aligned}
& S \rightarrow \boldsymbol{a} S \\
& S \rightarrow \Lambda
\end{aligned}
$$

Context-free: nonterminal \rightarrow anything

$$
S \rightarrow \boldsymbol{a} S \boldsymbol{b}
$$

Context-sensitive: more nonterminals on right-hand side

$$
A S B \rightarrow A A \boldsymbol{a} B B
$$

Recursively enumerable: no constraints
Related to Post systems and Kleene systems of rewrite rules
Natural languages probably context-free, parsable in real time!

```
Wumpus lexicon
            Noun }->\mathrm{ stench | breeze | glitter | nothing
                | wumpus | pit| pits| gold| east|...
            Verb }->\mathrm{ is | see| smell| shoot| feel| stinks
            go | grab| carry| kill| turn|...
    Adjective }->\mathrm{ right | left| east| south | back| smelly|...
    Adverb }->\mathrm{ here | there | nearby | ahead
        right| left| east| south| back|...
    Pronoun }->\mathrm{ me | you | I| it | ...
    Name -> John | Mary | Boston | UCB|PAJC| ...
    Article }->\mathrm{ the | a| an | ...
    Preposition }->\mathrm{ to | in | on | near | ...
    Conjunction }->\mathrm{ and | or | but | ...
    Digit }->0|1|2| 3| 4| 5| 6| 7| 8| 9
```

Divided into closed and open classes

Wumpus lexicon

```
    Noun -> stench | breeze| glitter | nothing
            wumpus| pit| pits| gold| east|...
    Verb }->\mathrm{ is | see| smell| shoot| feel| stinks
    go | grab| carry| kill| turn|...
    Adjective }->\mathrm{ right| left| east| south| back| smelly|...
    Adverb }->\mathrm{ here| there| nearby | ahead
    right| left| east| south| back|...
    Pronoun }->\mathrm{ me | you | I| it | S/HE| Y'ALL...
    Name -> John | Mary | Boston | UCB|PAJC| ...
    Article }->\mathrm{ the | a| an | ...
Preposition }->\mathrm{ to | in | on | near | ...
Conjunction }->\mathrm{ and | or | but | ...
```


Divided into closed and open classes

```
            Wumpus grammar
        S->NPVP I + feel a breeze
            | S Conjunction S I feel a breeze + and + I smell a wumpus
            NP }->\mathrm{ Pronoun I
            | Noun pits
            Article Noun the + wumpus
        Digit Digit 34
        NP PP the wumpus + to the east
        NP RelClause the wumpus + that is smelly
    VP->Verb stinks
            | VP NP feel + a breeze
            VP Adjective is + smelly
            | VPPP turn + to the east
            | VP Adverb go + ahead
    PP}->\mathrm{ Preposition NP to + the east
RelClause }->\mathrm{ that VP that + is smelly
```


Grammaticality judgements

Formal language L_{1} may differ from natural language L_{2}

Adjusting L_{1} to agree with L_{2} is a learning problem!

* the gold grab the wumpus
* I smell the wumpus the gold

I give the wumpus the gold

* I donate the wumpus the gold

Intersubjective agreement somewhat reliable, independent of semantics! Real grammars 10-500 pages, insufficient even for "proper" English

Exhibit the grammatical structure of a sentence

Exhibit the grammatical structure of a sentence

Exhibit the grammatical structure of a sentence

Exhibit the grammatical structure of a sentence

Most view syntactic structure as an essential step towards meaning;
"Mary hit John" $=$ "John hit Mary"
"And since I was not informed-as a matter of fact, since I did not know that there were excess funds until we, ourselves, in that checkup after the whole thing blew up, and that was, if you'll remember, that was the incident in which the attorney general came to me and told me that he had seen a memo that indicated that there were no more funds."

Syntax in NLP

Most view syntactic structure as an essential step towards meaning;
"Mary hit John" $=$ "John hit Mary"
"And since I was not informed-as a matter of fact, since I did not know that there were excess funds until we, ourselves, in that checkup after the whole thing blew up, and that was, if you'll remember, that was the incident in which the attorney general came to me and told me that he had seen a memo that indicated that there were no more funds."
"Wouldn't the sentence 'I want to put a hyphen between the words Fish and And and And and Chips in my Fish-And-Chips sign' have been clearer if quotation marks had been placed before Fish, and between Fish and and, and and and Chips, as well as after Chips?"

Context-free parsing

Bottom-up parsing works by replacing any substring that matches RHS of a rule with the rule's LHS

Efficient algorithms (e.g., chart parsing, Section 22.3) $O\left(n^{3}\right)$ for context-free, run at several thousand words/sec for real grammars

Context-free parsing \equiv Boolean matrix multiplication (Lee, 2002) \Rightarrow unlikely to find faster practical algorithms

BNF notation for grammars too restrictive:

- difficult to add "side conditions" (number agreement, etc.)
- difficult to connect syntax to semantics

Idea: express grammar rules as logic

$$
\begin{aligned}
& X \rightarrow Y Z \quad \text { becomes } Y\left(s_{1}\right) \wedge Z\left(s_{2}\right) \Rightarrow X\left(\text { Append }\left(s_{1}, s_{2}\right)\right) \\
& X \rightarrow \boldsymbol{w o r d} \text { becomes } X([\text { "word" }]) \\
& X \rightarrow Y \mid Z \text { becomes } Y(s) \Rightarrow X(s) \quad Z(s) \Rightarrow X(s)
\end{aligned}
$$

Here, $X(s)$ means that string s can be interpreted as an X

Logical grammars contd.

Now it's easy to augment the rules

$$
\begin{array}{r}
N P\left(s_{1}\right) \wedge \text { EatsBreakfast }\left(\operatorname{Re} f\left(s_{1}\right)\right) \wedge V P\left(s_{2}\right) \\
\Rightarrow N P\left(\text { Append }\left(s_{1},[\text { "who"" }], s_{2}\right)\right)
\end{array}
$$

$$
\begin{gathered}
N P\left(s_{1}\right) \wedge N \operatorname{Number}\left(s_{1}, n\right) \wedge V P\left(s_{2}\right) \wedge N u m b e r\left(s_{2}, n\right) \\
\Rightarrow S\left(\operatorname{Append}\left(s_{1}, s_{2}\right)\right)
\end{gathered}
$$

Parsing is reduced to logical inference:
$\operatorname{Ask}(K B, S([$ "I" "am" "a" "wumpus"]))
(Can add extra arguments to return the parse structure, semantics)
Generation simply requires a query with uninstantiated variables:
$\operatorname{Ask}(K B, S(x))$
If we add arguments to nonterminals to construct sentence semantics, NLP generation can be done from a given logical sentence:
$\operatorname{Ask}(K B, S(x, \operatorname{At}($ Robot, $[1,1]))$

Real language

Real human languages provide many problems for NLP:
\diamond ambiguity
\diamond anaphora
\diamond indexicality
\diamond vagueness
\diamond discourse structure
\diamond metonymy
\diamond metaphor
\diamond noncompositionality

Ambiguity

Squad helps dog bite victim

Squad helps dog bite victim
Helicopter powered by human flies

Ambiguity

Squad helps dog bite victim
Helicopter powered by human flies
American pushes bottle up Germans

Ambiguity

Squad helps dog bite victim
Helicopter powered by human flies
American pushes bottle up Germans
I ate spaghetti with meatballs

Ambiguity

Squad helps dog bite victim
Helicopter powered by human flies
American pushes bottle up Germans
I ate spaghetti with meatballs salad

Ambiguity

Squad helps dog bite victim
Helicopter powered by human flies
American pushes bottle up Germans
I ate spaghetti with meatballs
salad
abandon

Ambiguity

Squad helps dog bite victim
Helicopter powered by human flies
American pushes bottle up Germans
I ate spaghetti with meatballs
salad
abandon
a fork

Ambiguity

Squad helps dog bite victim
Helicopter powered by human flies
American pushes bottle up Germans
I ate spaghetti with meatballs
salad
abandon
a fork
a friend

Ambiguity

Squad helps dog bite victim
Helicopter powered by human flies
American pushes bottle up Germans
I ate spaghetti with meatballs
salad
abandon
a fork
a friend

Ambiguity can be lexical (polysemy), syntactic, semantic, referential

Using pronouns to refer back to entities already introduced in the text
After Mary proposed to John, they found a preacher and got married.

Using pronouns to refer back to entities already introduced in the text After Mary proposed to John, they found a preacher and got married.

For the honeymoon, they went to Hawaii

Using pronouns to refer back to entities already introduced in the text
After Mary proposed to John, they found a preacher and got married.
For the honeymoon, they went to Hawaii
Mary saw a ring through the window and asked John for it

Using pronouns to refer back to entities already introduced in the text After Mary proposed to John, they found a preacher and got married.

For the honeymoon, they went to Hawaii
Mary saw a ring through the window and asked John for it
Mary threw a rock at the window and broke it

Indexical sentences refer to utterance situation (place, time, S / H, etc.)
I am over here
Why did you do that?

Metonymy

Using one noun phrase to stand for another

I've read Shakespeare

Chrysler announced record profits
The ham sandwich on Table 4 wants another beer
"Non-literal" usage of words and phrases, often systematic:
I've tried killing the process but it won't die. Its parent keeps it alive.
Noncompositionality
basketball shoes
\square
basketball shoes
baby shoes
Noncompositionality
basketball shoes
baby shoes
alligator shoes

Noncompositionality
basketball shoes
baby shoes
alligator shoes
designer shoes

Noncompositionality

basketball shoes
baby shoes
alligator shoes
designer shoes
brake shoes
basketball shoes
baby shoes
alligator shoes
designer shoes
brake shoes
red book

Noncompositionality

basketball shoes
baby shoes
alligator shoes
designer shoes
brake shoes
red book
red pen
basketball shoes
baby shoes
alligator shoes
designer shoes
brake shoes
red book
red pen
red hair
basketball shoes
baby shoes
alligator shoes
designer shoes
brake shoes
red book
red pen
red hair
red herring
basketball shoes
baby shoes
alligator shoes
designer shoes
brake shoes
red book
red pen
red hair
red herring
small moon
basketball shoes
baby shoes
alligator shoes
designer shoes
brake shoes
red book
red pen
red hair
red herring
small moon
large molecule
basketball shoes
baby shoes
alligator shoes
designer shoes
brake shoes
red book
red pen
red hair
red herring
small moon
large molecule
mere child
basketball shoes
baby shoes
alligator shoes
designer shoes
brake shoes
red book
red pen
red hair
red herring
small moon
large molecule
mere child
alleged murderer
basketball shoes
baby shoes
alligator shoes
designer shoes
brake shoes
red book
red pen
red hair
red herring
small moon
large molecule
mere child
alleged murderer
real leather
\square
basketball shoes
baby shoes
alligator shoes
designer shoes
brake shoes
red book
red pen
red hair
red herring
small moon
large molecule
mere child
alleged murderer
real leather
artificial grass

