Making Complex Decisions
Chapter 17(1-2)

Building a policy

» Specify a solution for any initial state

— Construct a policy that outputs the best action
for any state
* policy =n
* policy in state s = ni(s)
— Complete policy covers all potential input
states

— Optimal policy, ©*, yields the highest expected
utility
* Why expected?

— Transitions are stochastic

Using a policy

* An agent in state s
— s is the percept available to agent

n*(s) outputs an action that maximizes
expected utility

» The policy is a description of a simple
reflex

Striking a balance

« Different policies demonstrate balance
between risk and reward

— Only interesting in stochastic environments (not
deterministic)

— Characteristic of many real-world problems

« Building the optimal policy is the hard part!

Attributes of optimality

« We wish to find policy that maximizes the
utility of agent during lifetime
— Maximize U([sy, S1, Sp, .-+, Sp)]

« But is length of lifetime known?

— Finite horizon — number of state transitions is
known
« After timestep N, nothing matters
—U([So, S1, Sps -, So)] = U([Sg, S, Ss -1 S St
Sn.] for all k>0
— Infinite horizon — always opportunity for more
state transitions

Time horizon

» Consider spot (3, 1)
— Let horizon =3

3| = || = | L

— Let horizon = 8

— Let horizon = inf

— Let horizon = 20 *
— Does n* change? ’

» Nonstationary optimal policy

Evaluating state sequences

» Additive Rewards
—Ul(a, b, ¢, ...)] = R(a) + R(b) + R(c) + ...
» Discounted Rewards
—U[(a, b, ¢, ...)] = R(a) + YR(b) + y2R(c) + ...
vy is the discount factor between 0 and 1
* What does this mean?

Evaluating a policy

» Each policy, &, generates multiple state
sequences
— Uncertainty in transitions according to T(s, a, s’)

 Policy value is an expected sum of
discounted rewards observed over all
possible state sequences

o0

Z ' R(s;) | m

=0

T = argmax F/
m

Building an optimal policy

» Value lteration
— Calculate the utility of each state

— Use the state utilities to select an optimal
action in each state

— Your policy is simple — go to the state with the
best utility
— Your state utilities must be accurate

» Through an iterative process you assign correct
values to the state utility values

Utility of states

» The utility of a state s is...

— the expected utility of the state sequences that
might follow it
» The subsequent state sequence is a function of n(s)

 The utility of a state given policy nis...

() =B | 5" ARl [o0 =

Restating the policy

» Previous slide said you go to state with
highest utility

* Actually...

— Go to state with maximum expected utility

» Reachable state with highest utility may have low
probability of being obtained

» Function of available actions, transition function,
resulting states

'IT*(.S) = &l'gllmXZ T(S @, SI)[;(SI)
g

a

Putting pieces together
» We said the utility of a state was:
UT(s)=E [f; ¥ R(si) |, }

t=0

» The policy is maximum expected utility
7*(5) = eu‘gl_naxZT(s.a. sYU(s)

- Therefore, utility of a state is the -
immediate reward for that state and
expected utility of next state

U(s) = R(s) +~ maxy_T(s,a.s)U(s)

Example

 Reuvisit 4x3 example
« Utility at cell (1, 1)

U(1,1) = —0.04+ v max{ 0.8U(L,2)+0.1U(2, 1) + 0.1U(1, 1), (Up)
0.9U(1,1) + 0.1U(1,2), (Left)
09U(1,1) 4 0.1U(2,1), (Down)
0.80(2,1)+ 010U(1,2) + 0.1U(1, 1)} (Right)

» Consider all outcomes of all possible
actions to select best action and assign its
expected utility to value of next-state in
equation

Using Bellman Equations to
solve MDPs

» Consider a particular MDP
— n possible states
— n Bellman equations (one for each state)

— n equations have n unknowns (U(s) for each
state)
* |terative technique to solve

