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Uncertainty

Let action At = leave for airport t minutes before flight
Will At get me there on time?

Problems:
1. partial observability (road state, other drivers' plans, etc.)
2. noisy sensors (traffic reports)

3. uncertainty in action outcomes (flat tire, etc.)

4. immense complexity of modeling and predicting traffic

Hence a purely logical approach either
1. risks falsehood: “A25 will get me there on time”, or

2. leads to conclusions that are too weak for decision making:

“A25 will get me there on time if there's no accident on the bridge and it doesn't rain and 
my tires remain intact etc etc.”

(A1440 might reasonably be said to get me there on time but I'd have to stay overnight in 
the airport …)

But…

• A decision must be made!

• No intelligent system can afford to 

consider all eventualities, wait until all the 
data is in and complete, or try all 

possibilities to see what happens
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Quick Overview of Reasoning 
Systems

• Logic:True or false, nothing in between.  No 
uncertainty

• Non-monotonic logic:True or false, but new 
information can change it.

• Probability:Degree of belief, but in the end it’s 
either true or false

• Fuzzy:Degree of belief, allows overlapping of 
true and false states

Examples

• Logic: All birds fly

• Non-monotonic

– Tweety flies, since he’s a bird and no 
evidence he doesn’t fly
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Probability

Probabilistic assertions summarize effects of
– laziness: failure to enumerate exceptions, qualifications, etc.

– ignorance: lack of relevant facts, initial conditions, etc.

Subjective probability:

• Probabilities relate propositions to agent's own state of 
knowledge

e.g., P(A25 | no reported accidents) = 0.06

These are not assertions about the world

Probabilities of propositions change with new evidence:

e.g., P(A25 | no reported accidents, 5 a.m.) = 0.15

Making decisions under 
uncertainty

Suppose I believe the following:
P(A25 gets me there on time | …) = 0.04 

P(A90 gets me there on time | …) = 0.70 

P(A120 gets me there on time | …) = 0.95 

P(A1440 gets me there on time | …) = 0.9999

• Which action to choose?

Depends on my preferences for missing flight vs. time 
spent waiting, etc.
– Utility theory is used to represent and infer preferences

– Decision theory = probability theory + utility theory
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Syntax

• Basic element: random variable

• Similar to propositional logic: possible worlds defined by assignment of 
values to random variables.

• Boolean random variables
e.g., Cavity (do I have a cavity?)

• Discrete random variables
e.g., Weather is one of <sunny,rainy,cloudy,snow>

• Domain values must be exhaustive and mutually exclusive

• Elementary proposition constructed by assignment of a value to a random 
variable: e.g., Weather = sunny, Cavity = false (abbreviated as ¬cavity)

• Complex propositions formed from elementary propositions and standard 
logical connectives e.g., Weather = sunny ∨ Cavity = false

Syntax

• Atomic event: A complete specification of the 
state of the world about which the agent is 
uncertain
E.g., if the world consists of only two Boolean variables 

Cavity and Toothache, then there are 4 distinct 
atomic events:

Cavity = false ∧Toothache = false

Cavity = false ∧ Toothache = true

Cavity = true ∧ Toothache = false

Cavity = true ∧ Toothache = true

• Atomic events are mutually exclusive and 
exhaustive
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Axioms of probability

• For any propositions A, B

– 0 ≤ P(A) ≤ 1

– P(true) = 1 and P(false) = 0

– P(A ∨ B) = P(A) + P(B) - P(A ∧ B)

Prior probability

• Prior or unconditional probabilities of propositions
e.g., P(Cavity = true) = 0.1 and P(Weather = sunny) = 0.72 correspond to belief 

prior to arrival of any (new) evidence

• Probability distribution gives values for all possible assignments:
P(Weather) = <0.72,0.1,0.08,0.1> (normalized, i.e., sums to 1)

• Joint probability distribution for a set of random variables gives the 
probability of every atomic event on those random variables
P(Weather,Cavity) = a 4 × 2 matrix of values:

Weather = sunny rainy cloudy snow 

Cavity = true 0.144 0.02 0.016 0.02

Cavity = false 0.576 0.08 0.064 0.08

• Every question about a domain can be answered by the joint distribution
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How could we estimate the full joint 
distribution?

Parameter estimates are provided by expert 
knowledge, statistics on data samples, or a 
combination of both.

Suppose you have 20 variables.

Expert knowledge:  
P(X1=0,X2=0,…,X13=1,…,X20=0) vs.

P(X1=0,X2=0,…,X13=0,…,X20=0) ?

Data Samples:  practically speaking, we don’t 
typically have enough data 

Conditional probability

• Conditional or posterior probabilities
e.g., P(cavity | toothache) = 0.8

i.e., given that toothache is all I know

• (Notation for conditional distributions:
P(Cavity | Toothache) = 2-element vector of 2-element vectors)

• If we know more, e.g., cavity is also given, then we have
P(cavity | toothache,cavity) = 1

• New evidence may be irrelevant, allowing simplification, e.g.,
P(cavity | toothache, sunny) = P(cavity | toothache) = 0.8

• This kind of inference, sanctioned by domain knowledge, is crucial



8

More on Conditional Probabilities

• P (CarWontStart | NoGas)
– This predicts a symptom based on an underlying 

cause

– These can be generated empirically (Drain N 
gastanks, see how many cars start) or using expert 
knowledge

• P (NoGas | CarWontStart)
– Diagnosis.  We have a symptom and want to predict 

the cause.  This is what the system wants to 
determine

Conditional probability

• Definition of conditional probability:
P(a | b) = P(a ∧ b) / P(b) if  P(b) > 0

• Product rule gives an alternative formulation:
P(a ∧ b) = P(a | b) P(b) = P(b | a) P(a)

• A general version holds for whole distributions, e.g.,
P(Weather,Cavity) = P(Weather | Cavity) P(Cavity)

• (View as a set of 4 × 2 equations, not matrix mult.)

• Chain rule is derived by successive application of product rule:
P(X1, …,Xn) = P(X1,...,Xn-1) P(Xn | X1,...,Xn-1)

= P(X1,...,Xn-2) P(Xn-1 | X1,...,Xn-2) P(Xn | X1,...,Xn-1)

= …

= πi= 1^n P(Xi | X1, … ,Xi-1)
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Inference by enumeration

• Start with the joint probability distribution:

• For any proposition φ, sum the atomic events where it is 
true: P(φ) = Σω:ω╞φ P(ω)

Inference by enumeration

• Start with the joint probability distribution:

• For any proposition φ, sum the atomic events where it is 
true: P(φ) = Σω:ω╞φ P(ω)

• P(toothache) = 0.108 + 0.012 + 0.016 + 0.064 = 0.2
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Inference by enumeration

• Start with the joint probability distribution:

• Can also compute conditional probabilities:

P(¬cavity | toothache) = P(¬cavity ∧ toothache)

P(toothache)

= 0.016+0.064

0.108 + 0.012 + 0.016 + 0.064

= 0.4

Normalization

• Denominator can be viewed as a normalization constant
α

P(Cavity | toothache) = α, P(Cavity,toothache) 
= α, [P(Cavity,toothache,catch) + P(Cavity,toothache,¬ catch)]

= α, [<0.108,0.016> + <0.012,0.064>] 

= α, <0.12,0.08> = <0.6,0.4>
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Independence

• A and B are independent iff

P(A|B) = P(A)    or P(B|A) = P(B)     or P(A, B) = P(A) P(B)

P(Toothache, Catch, Cavity, Weather)

= P(Toothache, Catch, Cavity) P(Weather)

• 32 entries reduced to 12; for n independent biased coins, O(2n)
→O(n)

• Absolute independence powerful but rare

• Dentistry is a large field with hundreds of variables, none of which 
are independent. What to do?

Conditional independence

• If I have a cavity, the probability that the probe catches in it doesn't 
depend on whether I have a toothache:
(1) P(catch | toothache, cavity) = P(catch | cavity)

• The same independence holds if I haven't got a cavity:
(2) P(catch | toothache,¬cavity) = P(catch | ¬cavity)




• Catch is conditionally independent of Toothache given Cavity:
P(Catch | Toothache,Cavity) = P(Catch | Cavity)

• Equivalent statements:
P(Toothache | Catch, Cavity) = P(Toothache | Cavity)

P(Toothache, Catch | Cavity) = P(Toothache | Cavity) P(Catch | Cavity)
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Conditional independence 
contd.

• Write out full joint distribution using chain rule:

P(Toothache, Catch, Cavity)
= P(Toothache | Catch, Cavity) P(Catch, Cavity)

= P(Toothache | Catch, Cavity) P(Catch | Cavity) P(Cavity)

= P(Toothache | Cavity) P(Catch | Cavity) P(Cavity)

• In most cases, the use of conditional independence 
reduces the size of the representation of the joint 
distribution from exponential in n to linear in n.

• Conditional independence is our most basic and robust 
form of knowledge about uncertain environments.

Bayes' Rule

• Product rule P(a∧b) = P(a | b) P(b) = P(b | a) P(a)

⇒ Bayes' rule: P(a | b) = P(b | a) P(a) / P(b)

• or in distribution form

P(Y|X) = P(X|Y) P(Y) / P(X) = αP(X|Y) P(Y)

• Useful for assessing diagnostic probability from causal 
probability:

– P(Cause|Effect) = P(Effect|Cause) P(Cause) / P(Effect)

– E.g., let M be meningitis, S be stiff neck:
P(m|s) = P(s|m) P(m) / P(s) = 0.8 × 0.0001 / 0.1 = 0.0008

– Note: posterior probability of meningitis still very small!
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Bayes' Rule and conditional 
independence

P(Cavity | toothache ∧ catch) 
= αP(toothache ∧ catch | Cavity) P(Cavity) 

= αP(toothache | Cavity) P(catch | Cavity) P(Cavity) 




• This is an example of a naïve Bayes model:
P(Cause,Effect1, … ,Effectn) = P(Cause) πiP(Effecti|Cause)

• Total number of parameters is linear in n

• All features/symptoms/effects conditionally independent of 
each other given the class/diagnosis/cause

Summary

• Probability is a rigorous formalism for uncertain 
knowledge

• Joint probability distribution specifies probability 
of every atomic event

• Queries can be answered by summing over 
atomic events

• For nontrivial domains, we must find a way to 
reduce the joint size

• Independence and conditional independence
provide the tools


