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Propositional Logic

Chapter 7

Outline

• Review
– Knowledge-based agents

– Logic in general 

– Propositional logic in particular – syntax and semantics

• Wumpus world

• Inference rules and theorem proving
– Resolution

– forward chaining

– backward chaining
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Logic in general

• Logics are formal languages for representing information 
such that conclusions can be drawn

• Syntax defines the sentences in the language

• Semantics define the "meaning" of sentences;
– i.e., define truth of a sentence in a world

• E.g., the language of arithmetic
– x+2 ≥ y is a sentence; x2+y > {} is not a sentence

– x+2 ≥ y is true iff the number x+2 is no less than the number y

– x+2 ≥ y is true in a world where x = 7, y = 1

– x+2 ≥ y is false in a world where x = 0, y = 6

Entailment
• Entailment means that one thing follows from 

another:
KB ╞ α

• Knowledge base KB entails sentence α if and only 
if α is true in all worlds where KB is true

– E.g., the KB containing “the Steelers won” and “the 
Bengals won” entails “Either the Steelers won or the 
Bengals won”

– E.g., x+y = 4 entails  4 = x+y

– Entailment is a relationship between sentences (i.e., 
syntax) that is based on semantics
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Inference

• KB ├i α = sentence α can be derived from KB by 
procedure i

• Soundness: i is sound if whenever KB ├i α, it is also true 
that KB╞ α

• Completeness: i is complete if whenever KB╞ α, it is also 
true that KB ├i α

• Preview: we will define a logic (first-order logic) which is 
expressive enough to say almost anything of interest, 
and for which there exists a sound and complete 
inference procedure.

• That is, the procedure will answer any question whose 
answer follows from what is known by the KB.
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Propositional logic: Syntax

• Propositional logic is the simplest logic – illustrates 
basic ideas

• The proposition symbols P1, P2 etc are sentences

– If S is a sentence, ¬S is a sentence (negation)

– If S1 and S2 are sentences, S1 ∧ S2 is a sentence (conjunction)

– If S1 and S2 are sentences, S1 ∨ S2 is a sentence (disjunction)

– If S1 and S2 are sentences, S1 ⇒ S2 is a sentence (implication)

– If S1 and S2 are sentences, S1 ⇔ S2 is a sentence (biconditional)

Propositional Logic: Semantics 
(truth tables for connectives)
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Wumpus World PEAS 
description

• Performance measure

– gold +1000, death -1000

– -1 per step, -10 for using the arrow

• Environment

– Squares adjacent to wumpus are smelly

– Squares adjacent to pit are breezy

– Glitter iff gold is in the same square

– Shooting kills wumpus if you are facing it

– Shooting uses up the only arrow

– Grabbing picks up gold if in same square

– Releasing drops the gold in same square

• Sensors: Stench, Breeze, Glitter, Bump, Scream

• Actuators: Left turn, Right turn, Forward, Grab, Release, Shoot

Wumpus world characterization

• Fully Observable

• Deterministic

• Episodic

• Static

• Discrete

• Single-agent?
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Wumpus world characterization

• Fully Observable No – only local perception

• Deterministic Yes – outcomes exactly specified

• Episodic No – sequential at the level of actions

• Static Yes – Wumpus and Pits do not move

• Discrete Yes

• Single-agent? Yes – Wumpus is essentially a 

natural feature

Wumpus World continued

• Main difficulty:  Agent doesn’t know the 

configuration

• Reason about configuration

• Knowledge evolves as new percepts arrive 

and actions are taken.
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Wumpus Example

breeze[Pit]breeze[start]

stench,

breeze

Glitter

[gold]

stench[Wumpus
]

stench

0

0

Examples of reasoning

• If the player is in square (1, 0) and the percept is 
breeze, then there must be a pit in (0,0) or a pit 
in (2,0) or a pit in (1,1).

• If the player is now in (0,0) [and still alive], there 
is not a pit in (0,0).

• If there is no breeze percept in (0,0), there is no 
pit in (0,1)

• If there is also no breeze in (0,1) then there is no 
pit in (1,1).

• Therefore, there must be a pit in (2,0)



8

Exploring a wumpus world

Exploring a wumpus world
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Exploring a wumpus world

Exploring a wumpus world
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Exploring a wumpus world

Exploring a wumpus world
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Exploring a wumpus world

Exploring a wumpus world
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Entailment in the wumpus world

Situation after detecting 
nothing in [1,1], moving 
right, breeze in [2,1]

Consider possible models for 
KB assuming only pits

3 Boolean choices ⇒ 8 
possible models

Wumpus models
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Wumpus models

• KB = wumpus-world rules + observations


Wumpus models

• KB = wumpus-world rules + observations

• α1 = "[1,2] is safe", KB ╞ α1, proved by model checking
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Wumpus models

• KB = wumpus-world rules + observations

Wumpus models

• KB = wumpus-world rules + observations

• α2 = "[2,2] is safe", KB ╞ α2
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Logical Representation of Wumpus

Is there a pit in [i, j]?

Is there a breeze in [i, j]?

Pits cause breezes in adjacent squares.

Some Wumpus world sentences

Let Pi,j be true if there is a pit in [i, j].

Let Bi,j be true if there is a breeze in [i, j].
¬ P1,1

¬B1,1

B2,1

…

• "Pits cause breezes in adjacent squares"
B1,1  ⇔ (P1,2 ∨ P2,1)

B2,1  ⇔ (P1,1 ∨ P2,2 ∨ P3,1)

…
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Inference-based agents in the 
wumpus world

A wumpus-world agent using propositional logic:

¬P1,1

¬W1,1

Bx,y ⇔ (Px,y+1 ∨ Px,y-1 ∨ Px+1,y ∨ Px-1,y) 

Sx,y ⇔ (Wx,y+1 ∨ Wx,y-1 ∨ Wx+1,y ∨ Wx-1,y)

W1,1 ∨ W1,2 ∨ … ∨ W4,4

¬W1,1 ∨ ¬W1,2

¬W1,1 ∨ ¬W1,3

…

⇒ 64 distinct proposition symbols, 155 sentences

Truth tables for inference
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Inference by enumeration

• Depth-first enumeration of all models is sound and complete 

• For n symbols, time complexity is O(2n), space complexity is O(n)

Logical equivalence

• Two sentences are logically equivalent iff true in same 

models: α ≡ ß iff α╞ β and β╞ α
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Example Proof by Deduction

• Knowledge
S1: B22 ⇔⇔⇔⇔ ( P21 ∨∨∨∨ P23 ∨∨∨∨ P12 ∨∨∨∨ P32 ) rule

S2: ¬B22 observation

• Inferences
S3: (B22 ⇒⇒⇒⇒ (P21 ∨∨∨∨ P23 ∨∨∨∨ P12 ∨∨∨∨ P32 ))∧∧∧∧

((P21 ∨∨∨∨ P23 ∨∨∨∨ P12 ∨∨∨∨ P32 ) ⇒⇒⇒⇒ B22)    S1,bi elim

S4:

S5:

S6:

S7:

Example Proof by Deduction

• Knowledge
S1: B22 ⇔⇔⇔⇔ ( P21 ∨∨∨∨ P23 ∨∨∨∨ P12 ∨∨∨∨ P32 ) rule

S2: ¬B22 observation

• Inferences
S3: (B22 ⇒⇒⇒⇒ (P21 ∨∨∨∨ P23 ∨∨∨∨ P12 ∨∨∨∨ P32 ))∧∧∧∧

((P21 ∨∨∨∨ P23 ∨∨∨∨ P12 ∨∨∨∨ P32 ) ⇒⇒⇒⇒ B22)    S1,bi elim

S4: ((P21 ∨∨∨∨ P23 ∨∨∨∨ P12 ∨∨∨∨ P32 ) ⇒⇒⇒⇒ B22)     S3, and elim

S5: (¬B22 ⇒⇒⇒⇒¬( P21 ∨∨∨∨ P23 ∨∨∨∨ P12 ∨∨∨∨ P32 )) contrapos

S6: ¬(P21 ∨∨∨∨ P23 ∨∨∨∨ P12 ∨∨∨∨ P32 )                 S2,S5, MP

S7: ¬P21 ∧∧∧∧ ¬P23 ∧∧∧∧ ¬P12 ∧∧∧∧ ¬P32              S6, DeMorg
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Proof methods

• Proof methods divide into (roughly) two kinds:

– Application of inference rules
• Legitimate (sound) generation of new sentences from old

• Proof = a sequence of inference rule applications
Can use inference rules as operators in a standard search

• Typically require transformation of sentences into a normal form

– Model checking
• truth table enumeration (always exponential in n)

• improved backtracking, e.g., Davis--Putnam-Logemann-Loveland 
(DPLL)

• heuristic search in model space (sound but incomplete)

e.g., min-conflicts-like hill-climbing algorithms

Resolution

Conjunctive Normal Form (CNF)
conjunction of disjunctions of literals

clauses

E.g., (A ∨ ¬B) ∧ (B ∨ ¬C ∨ ¬D)

• Resolution inference rule (for CNF):
li ∨… ∨ lk, m1 ∨ … ∨ mn


li ∨ … ∨ li-1 ∨ li+1 ∨ … ∨ lk ∨ m1 ∨ … ∨ mj-1 ∨ mj+1 ∨... ∨ mn



where li and mj are complementary literals. 

E.g., P1,3 ∨ P2,2, ¬P2,2

P1,3

• Resolution is sound and complete 
for propositional logic
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Resolution in Wumpus World

• There is a pit at 2,1 or 2,3 or 1,2 or 3,2
– P21 ∨∨∨∨ P23 ∨∨∨∨ P12 ∨∨∨∨ P32

• There is no pit at 2,1
– ¬P21

• Therefore (by resolution) the pit must be at 
2,3 or 1,2 or 3,2
– P23 ∨∨∨∨ P12 ∨∨∨∨ P32

Conversion to CNF

B1,1 ⇔ (P1,2 ∨ P2,1)

1. Eliminate ⇔, replacing α ⇔ β with (α⇒ β)∧(β⇒ α).

2. Eliminate ⇒, replacing α⇒ β with ¬α∨ β.

3. Move ¬ inwards using de Morgan's rules and double-
negation:

4. Apply distributivity law (∧ over ∨) and flatten:



21

Conversion to CNF

B1,1 ⇔ (P1,2 ∨ P2,1)

1. Eliminate ⇔, replacing α ⇔ β with (α⇒ β)∧(β⇒ α).
(B1,1 ⇒ (P1,2 ∨ P2,1)) ∧ ((P1,2 ∨ P2,1) ⇒ B1,1)

2. Eliminate ⇒, replacing α⇒ β with ¬α∨ β.
(¬B1,1 ∨ P1,2 ∨ P2,1) ∧ (¬(P1,2 ∨ P2,1) ∨ B1,1)

3. Move ¬ inwards using de Morgan's rules and double-
negation:
(¬B1,1 ∨ P1,2 ∨ P2,1) ∧ ((¬P1,2 ∧ ¬P2,1) ∨ B1,1)

4. Apply distributivity law (∧ over ∨) and flatten:
(¬B1,1 ∨ P1,2 ∨ P2,1) ∧ (¬P1,2 ∨ B1,1) ∧ (¬P2,1 ∨ B1,1)

B22 ⇔⇔⇔⇔ ( P21 ∨∨∨∨ P23 ∨∨∨∨ P12 ∨∨∨∨ P32 ) 

1. Eliminate ⇔⇔⇔⇔ , replacing with two implications

(B22 ⇒⇒⇒⇒ ( P21 ∨∨∨∨ P23 ∨∨∨∨ P12 ∨∨∨∨ P32 )) ∧∧∧∧ ((P21 ∨∨∨∨ P23 ∨∨∨∨ P12 ∨∨∨∨ P32 ) ⇒⇒⇒⇒ B22)

2. Replace implication (A ⇒⇒⇒⇒ B) by  ¬A ∨∨∨∨ B

(¬B22 ∨∨∨∨ ( P21 ∨∨∨∨ P23 ∨∨∨∨ P12 ∨∨∨∨ P32 )) ∧∧∧∧ (¬(P21 ∨∨∨∨ P23 ∨∨∨∨ P12 ∨∨∨∨ P32 ) ∨∨∨∨ B22)

3. Move ¬ “inwards” (unnecessary parens removed)

(¬B22 ∨∨∨∨ P21 ∨∨∨∨ P23 ∨∨∨∨ P12 ∨∨∨∨ P32 ) ∧∧∧∧ ( (¬P21 ∧∧∧∧ ¬P23 ∧∧∧∧ ¬P12 ∧∧∧∧ ¬P32 ) ∨∨∨∨
B22)

4.  Distributive Law

(¬B22 ∨∨∨∨ P21 ∨∨∨∨ P23 ∨∨∨∨ P12 ∨∨∨∨ P32 ) ∧∧∧∧ (¬P21 ∨∨∨∨ B22) ∧∧∧∧ (¬P23 ∨∨∨∨ B22) ∧∧∧∧ (¬P12 

∨∨∨∨ B22) ∧∧∧∧ (¬P32 ∨∨∨∨ B22)
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Last Step

• Sentences are now in CNF:

• (P1 v P2 v ~P3) ^ P4 ^ ~P5 ^ (P2 v P3)

• Create a separate clause corresponding to 
each conjunct
– P1 v P2 v ~P3

– P4

– ~P5

– P2 v P3

Simple Resolution Example

• When the agent is in 1,1, there is no 

breeze, so there can be no pits in 

neighboring squares

• Percept: ~B11

• Prove:  ~P12.
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Resolution example

• KB = (B1,1 ⇔ (P1,2∨ P2,1)) ∧¬ B1,1 

• α = ¬P1,2

Resolution example

• KB = (B1,1 ⇔ (P1,2∨ P2,1)) ∧¬ B1,1 

• α = ¬P1,2
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Forward and backward chaining

• Horn Form (restricted)
KB = conjunction of Horn clauses

– Horn clause = 
• proposition symbol;  or

• (conjunction of symbols) ⇒ symbol

– E.g., C ∧ (B ⇒ A) ∧ (C ∧ D ⇒ B)

• Modus Ponens (for Horn Form): complete for Horn KBs

α1, … ,αn, α1 ∧ … ∧ αn ⇒ β
β

• Can be used with forward chaining or backward 
chaining.

• These algorithms are very natural and run in linear time

Forward chaining

• Idea: fire any rule whose premises are satisfied in the 

KB,

– add its conclusion to the KB, until query is found
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Forward chaining example

Forward chaining example
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Forward chaining example

Forward chaining example
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Forward chaining example

Forward chaining example
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Forward chaining example

Forward chaining example
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Backward chaining

Idea: work backwards from the query q:
to prove q by BC,

check if q is known already, or

prove by BC all premises of some rule concluding q

Avoid loops: check if new subgoal is already on the goal 
stack

Avoid repeated work: check if new subgoal

1. has already been proved true, or

2. has already failed

Backward chaining example
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Backward chaining example

Backward chaining example
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Backward chaining example

Backward chaining example
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Backward chaining example

Backward chaining example
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Backward chaining example

Backward chaining example



34

Backward chaining example

Forward vs. backward chaining

• FC is data-driven, automatic, unconscious processing,
– e.g., object recognition, routine decisions

• May do lots of work that is irrelevant to the goal 

• BC is goal-driven, appropriate for problem-solving,
– e.g., Where are my keys? How do I get into a PhD program?

• Complexity of BC can be much less than linear in size of 
KB
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Efficient propositional inference

Two families of efficient algorithms for propositional 

inference:

Complete backtracking search algorithms

• DPLL algorithm (Davis, Putnam, Logemann, Loveland)

• Incomplete local search algorithms

– WalkSAT algorithm

• KB contains "physics" sentences for every single 

square


• For every time t and every location [x,y],

Lx,y ∧ FacingRightt ∧ Forwardt ⇒ Lx+1,y

• Rapid proliferation of clauses

Expressiveness limitation of 
propositional logic

tt
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Summary

• Logical agents apply inference to a knowledge base to 
derive new information and make decisions

• Basic concepts of logic:
– syntax: formal structure of sentences

– semantics: truth of sentences wrt models

– entailment: necessary truth of one sentence given another

– inference: deriving sentences from other sentences

– soundness: derivations produce only entailed sentences

– completeness: derivations can produce all entailed sentences

• Wumpus world requires the ability to represent partial and 
negated information, reason by cases, etc.

• Resolution is complete for propositional logic
Forward, backward chaining are linear-time, complete for 
Horn clauses

• Propositional logic lacks expressive power


