
1

Adversarial Search

Chapter 6

Sections 1-4

Outline

• Games

• Optimal decisions

• α-β pruning

• Imperfect, real-time decisions

2

Game Search

• Game-playing programs developed by AI researchers since
the beginning of the modern AI era (chess, checkers in
1950s)

• Game Search
– Sequences of player’s decisions we control

– Decision of other player(s) we do not control

• Contingency problem: many possible opponent’s moves
must be “covered” by the solution
– Introduces uncertainty to the game since we do not know what the

opponent will do

• Rational opponent: maximizes it’s own utility function

Types of Game Problems

• Adversarial
– Win of one player is a loss of the other

– Focus of this course

• Cooperative
– Players have common interests and utility

function

• A spectrum of others in between

3

Typical AI “Games:

• Deterministic and Fully Observable
Environment

• Two agents with turn-taking for actions

• Zero-sum (adverserial)

• Abstract (robotic soccer notable exception)

– state easy to represent, few action choices,
well-defined goals

– hard to solve

Types of Games

Deterministic Chance

Perfect
Information

Tic Tac Toe,
Chess

Backgammon

Imperfect
information

Stratego Poker,
Bridge

4

Game Search

• Problem Formulation

– Initial state: initial board position + information about
whose move it is

– Successors: legal moves a player can make

– Goal (terminal test): determines when the game is over

– Utility function: measures the outcome of the game and
its desirability

• Search objective

– Find the sequence of player’s decisions (moves)
maximizing its utility

– Consider the opponent’s moves and their utility

Game Tree

• Initial State and Legal Moves for Each
Side

5

Game Tree
(2-player, deterministic, turns)

Game Tree
(2-player, deterministic, turns)

• MAX and MIN are the 2 players

• MAX goes first

• Players then take turns

6

Game Tree
(2-player, deterministic, turns)

• MAX has 9 possible legal first

moves (ignoring symmetry)

Game Tree
(2-player, deterministic, turns)

• Utility of terminal states (when

game is over) is from MAX’s point

of view

• Points are awarded to both

players at the end of the game

• -1 is a loss

• 0 is a draw

• 1 is a win

7

Minimax Algorithm

• How do we deal with the contingency
problem?

– Assuming that the opponent is rational and
always optimizes its behavior (opposite to us), we
consider the opponent’s best response

– Then the minimax algorithm determines the best
move

Minimax

• Finds an optimal (contingent) strategy, assuming perfect play
for deterministic games

• Idea: choose move to position with highest MINIMAX VALUE
= best achievable payoff against best play

• MINIMAX-VALUE (n)

– UTILITY (n) if n is a terminal state

– max_ss MINIMAX-VALUE (ss) if n is a MAX node

–– min_min_ss MINIMAX-VALUE (s) if n is a MIN node

(where s is an element of the successors of n)

8

Minimax Example

• E.g., 2-ply game (with utility values at the leaves)

Properties of minimax

• Complete? Yes (if tree is finite)

• Optimal? Yes (against an optimal opponent)

• Time complexity? O(bm)

• Space complexity? O(bm) (depth-first exploration)

• For chess, b ≈ 35, m ≈100 for "reasonable" games
� exact solution completely infeasible

• Do we really need to explore every path???

9

Solutions to the Complexity Problem

• Dynamic pruning of redundant branches of the
search tree

– Some branches will never be played by rational players
since they include sub-optimal decisions (for either player)

• Identify a provably suboptimal branch of the search tree before it is
fully explored

• Eliminate the suboptimal branch

– Procedure: Alpha-Beta Pruning

• Early cutoff of the search tree

– Use imperfect minimax value estimate of non-terminal
states

α-β pruning example

10

α-β pruning example

α-β pruning example

11

α-β pruning example

α-β pruning example

12

α-β pruning example

MINIMAX-VALUE(root)
= max(min(3,12,8), min(2,x,y), min(14,5,2))
= max (3, min(2,x,y), 2)
= max(3, z, 2) for z <= 2
= 3

Properties of α-β

• Pruning does not affect final result

• Good move ordering improves effectiveness of pruning

• With "perfect ordering," time complexity = O(bm/2)

• A simple example of the value of reasoning about which
computations are relevant (a form of metareasoning)

13

Resource limits

Recap

– Minimax explores the full search space

– Alpha Beta prunes, but still searches all the way to
terminal states for a portion of the search space

Standard approaches to fix resource limits

– cutoff test:

e.g., depth limit

– evaluation function

= estimated desirability of position

Evaluation functions

• For chess, typically linear weighted sum of features

Eval(s) = w1 f1(s) + w2 f2(s) + … + wn fn(s)

• e.g., w1 = 9 with

f1(s) = (number of white queens) – (number of black
queens), etc.

14

Cutting off search

MinimaxCutoff is identical to MinimaxValue except

1. Terminal? is replaced by Cutoff?

2. Utility is replaced by Eval

4-ply lookahead is a hopeless chess player!

– 4-ply ≈ human novice

– 8-ply ≈ typical PC, human master

– 12-ply ≈ Deep Blue, Kasparov

Deterministic games in practice

• Checkers: Chinook ended 40-year-reign of human world champion
Marion Tinsley in 1994. Used a precomputed endgame database
defining perfect play for all positions involving 8 or fewer pieces on the
board, a total of 444 billion positions. More recently, Checkers was
SOLVED.

• Chess: Deep Blue defeated human world champion Garry Kasparov in
a six-game match in 1997. Deep Blue searches 200 million positions
per second, uses very sophisticated evaluation, and undisclosed
methods for extending some lines of search up to 40 ply.

• Othello: human champions refuse to compete against computers, who
are too good.

• Go: human champions refuse to compete against computers, who are
too bad. In go, b > 300, so most programs use pattern knowledge
bases to suggest plausible moves.

• AAAI conferences now have general game-playing competitions, with a
$10K prize!

15

Summary

• Games are fun to work on!

• They illustrate several important points
about AI

• perfection is unattainable � must
approximate

• good idea to think about what to think
about

