
1

CS 2710 1

Informed Search and Exploration

Chapter 4 (4.1-4.3)

CS 2710 – Informed Search 2

Introduction

• Ch.3 searches – good

building blocks for

learning about search

• But vastly inefficient eg:

• Can we

do better?

Breadth Depth Uniform

First First Cost

Time B̂ D B̂ M >B̂ D (?)

Space B̂ D BM >B̂ D (?)

Optimal? Y N Y

Complete? Y N Y

2

CS 2710 – Informed Search 3

(Quick Partial) Review

� Previous algorithms differed in how to select
next node for expansion eg:

� Breadth First

� Fringe nodes sorted old -> new

� Depth First

� Fringe nodes sorted new -> old

� Uniform cost

� Fringe nodes sorted by path cost: small -> big

� Used little (no) “external” domain knowledge

CS 2710 – Informed Search 4

Overview

� Heuristic Search

� Best-First Search Approach

� Greedy

� A*

� Heuristic Functions

� Local Search and Optimization

� Hill-climbing

� Simulated Annealing

� Local Beam

� Genetic Algorithms

3

CS 2710 – Informed Search 5

Informed Searching

� An informed search strategy uses knowledge
beyond the definition of the problem

� The knowledge is embodied in an evaluation
function f(n)

CS 2710 – Informed Search 6

Best-First Search

� An algorithm in which a node is selected for
expansion based on an evaluation function
f(n)

� Fringe nodes ordered by f(n)

� Traditionally the node with the lowest evaluation
function is selected

� Not an accurate name…expanding the best node
first would be a straight march to the goal.

� Choose the node that appears to be the best

4

CS 2710 – Informed Search 7

Best-First Search

� Remember: Uniform cost search

� F(n) = g(n)

� Best-first search:

� F(n) = h(n)

� Later, a-star search:

� F(n) = g(n) + h(n)

CS 2710 – Informed Search 8

Best-First Search (cont.)

� Some BFS algorithms also include the notion of a
heuristic function h(n)

� h(n) = estimated cost of the cheapest path from
node n to a goal node

� Best way to include informed knowledge into a
search

� Examples:
� How far is it from point A to point B

� How much time will it take to complete the rest of the
task at current node to finish

5

CS 2710 – Informed Search 9

Greedy Best-First Search

� Expands node estimated to be closest to the
goal

� f(n) = h(n)

� Consider the route finding problem.

� Can we use additional information to avoid
costly paths that lead nowhere?

� Consider using the straight line distance (SLD)

CS 2710 – Informed Search 10

Route Finding

374

253
366

329

6

CS 2710 – Informed Search 11

Route Finding: Greedy Best First

Arad f(n) = 366

CS 2710 – Informed Search 12

Route Finding: Greedy Best First

Arad f(n) = 366

TimisoaraSibiu Zerind 374329253

7

CS 2710 – Informed Search 13

Route Finding: Greedy Best First

Arad f(n) = 366

TimisoaraSibiu Zerind 374329253

Arad Rimnicu VilceaOradeaFagaras366 176 380 193

CS 2710 – Informed Search 14

Route Finding: Greedy Best First

Arad f(n) = 366

TimisoaraSibiu Zerind 374329253

Arad Rimnicu VilceaOradeaFagaras366 176 380 193

Bucharest Sibiu0 253

8

CS 2710 – Informed Search 15

Exercise

So is Arad->Sibiu->Fagaras->Bucharest optimal?

CS 2710 – Informed Search 16

Greedy Best-First Search

� Not optimal.

� Not complete.

� Could go down a path and never return to try another.

� e.g., Iasi � Neamt � Iasi � Neamt � …

� Space Complexity

� O(bm) – keeps all nodes in memory

� Time Complexity

� O(bm) (but a good heuristic can give a dramatic improvement)

9

CS 2710 – Informed Search 17

Heuristic Functions

• Example: 8-Puzzle

– Average solution cost for a random
puzzle is 22 moves

– Branching factor is about 3
• Empty tile in the middle -> four moves

• Empty tile on the edge -> three moves

• Empty tile in corner -> two moves

– 322 is approx 3.1e10
• Get rid of repeated states

• 181,440 distinct states

CS 2710 – Informed Search 18

Heuristic Functions

• h1 = number of misplaced tiles

• h2 = sum of distances of tiles to goal position.

10

CS 2710 – Informed Search 19

Heuristic Functions

� h1 = 7

� h2 = 4+0+3+3+1+0+2+1 = 14

CS 2710 – Informed Search 20

Admissible Heuristics

� A heuristic function h(n) is admissible if it never
overestimates the cost to reach the goal from n

� Another property of heuristic functions is
consistency
� h(n) ≤ c(n,a,n’) + h(n’) where:

� c(n,a,n’) is the cost to get to n’ from n using action a.

� Consistent h(n) � the values of f(n) along any path are
non-decreasing

� Graph search is optimal if h(n) is consistent

11

CS 2710 – Informed Search 21

Heuristic Functions

� Is h1 (#of displaced tiles)

� admissible?

� consistent?

� Is h2 (Manhattan distance)

� admissible?

� consistent?

CS 2710 – Informed Search 22

Dominance

� If h2(n) ≥ h1(n) for all n (both admissible)
� then h2 dominates h1

� h2 is better for search

� Typical search costs (average number of nodes expanded):

� d=12 IDS = 3,644,035 nodes
A*(h1) = 227 nodes
A*(h2) = 73 nodes

� d=24 IDS = too many nodes
A*(h1) = 39,135 nodes
A*(h2) = 1,641 nodes G

12

CS 2710 – Informed Search 23

Heuristic Functions

� Heuristics are often obtained from relaxed
problem

� Simplify the original problem by removing
constraints

� The cost of an optimal solution to a relaxed
problem is an admissible heuristic.

CS 2710 – Informed Search 24

8-Puzzle

� Original

� A tile can move from A to B if A is horizontally or
vertically adjacent to B and B is blank.

� Relaxations

� Move from A to B if A is adjacent to B(remove “blank”)

� h2 by moving each tile in turn to destination

� Move from A to B (remove “adjacent” and “blank”)

� h1 by simply moving each tile directly to destination

13

CS 2710 – Informed Search 25

How to Obtain Heuristics?How to Obtain How to Obtain Heuristics??

� Ask the domain expert (if there is one)

� Solve example problems and generalize your experience on which
operators are helpful in which situation (particularly important for
state space search)

� Try to develop sophisticated evaluation functions that measure the
closeness of a state to a goal state (particularly important for state
space search)

� Run your search algorithm with different parameter settings trying to
determine which parameter settings of the chosen search algorithm
are “good” to solve a particular class of problems.

� Write a program that selects “good parameter” settings based on
problem characteristics (frequently very difficult) relying on machine
learning

CS 2710 – Informed Search 26

A* Search

� The greedy best-first search does not
consider how costly it was to get to a node.
� f(n) = h(n)

� Idea: avoid expanding paths that are already
expensive

� Combine g(n), the cost to reach node n, with
h(n)
� f(n) = g(n) + h(n)

� estimated cost of cheapest solution through n

14

CS 2710 – Informed Search 27

A* Search

� When h(n) = actual cost to goal

� Only nodes in the correct path are expanded

� Optimal solution is found

� When h(n) < actual cost to goal

� Additional nodes are expanded

� Optimal solution is found

� When h(n) > actual cost to goal

� Optimal solution can be overlooked

CS 2710 – Informed Search 28

A* Search

� Complete
� Yes, unless there are infinitely many nodes with f <= f(G)

� Time
� Exponential in [relative error of h x length of soln]

� The better the heuristic, the better the time
� Best case h is perfect, O(d)

� Worst case h = 0, O(bd) same as BFS

� Space
� Keeps all nodes in memory and save in case of repetition

� This is O(bd) or worse

� A* usually runs out of space before it runs out of time

� Optimal
� Yes, cannot expand fi+1 unless fi is finished

15

CS 2710 – Informed Search 29

Route Finding

CS 2710 – Informed Search 30

A* Example

16

CS 2710 – Informed Search 31

A* Search

Arad f(n) = 0 + 366

TimisoaraSibiu Zerind 449447393
=140+253

Arad Rimnicu VilceaOradeaFagaras646 415 671 413

Things are
different now!

CS 2710 – Informed Search 32

A* Search Continued

Arad Rimnicu VilceaOradeaFagaras646 415 671 413

591

SibiuBucharest

450

Pitesti SibiuCraiova
526 417 553

Craiova
615

Rimnicu Vilcea

607

Bucharest

418

17

CS 2710 – Informed Search 33

A* Properties review

� Complete
� Yes, unless there are infinitely many nodes with f <= f(G)

� Time
� Exponential in [relative error of h x length of soln]

� The better the heuristic, the better the time
� Best case h is perfect, O(d)

� Worst case h = 0, O(bd) same as BFS

� Space
� Keeps all nodes in memory and save in case of repetition

� This is O(bd) or worse

� A* usually runs out of space before it runs out of time

� Optimal
� Yes, cannot expand fi+1 unless fi is finished

CS 2710 – Informed Search 34

A* Exercise

1st Expansion City Pgh

H-Val 50

Fringe 14, 16

12 11

City Carnegie City Uniontown

H-Val 4 H-Val 3

F-Val 16 F-Val 14

Fringe Fringe

A*

18

CS 2710 – Informed Search 35

A* Exercise

2
nd

 Expansion
City Pgh

H-Val 50

F-Val

Fringe

12 11

City Carnegie City Uniontown

H-Val 4 H-Val 3

F-Val 16 F-Val

Fringe Fringe 16, 20, 36

9 5

City Wash. City Hickory

H-Val 0 H-Val 20

F-Val 20 F-Val 36

CS 2710 – Informed Search 36

A* Exercise

City Pgh

H-Val 50

F-Val

Fringe

12 11

City Carnegie City Uniontown

H-Val 4 H-Val 3

F-Val F-Val

Fringe 17,20,29,36 Fringe

10 5 9 5

City Houston City Wash. City Hickory

H-Val 7 H-Val 0 H-Val 20

F-Val 29 F-Val 17 F-Val 36

19

CS 2710 – Informed Search 37

A* Search; complete

• A* is complete.

A* builds search “bands” of increasing f(n)

At all points f(n) < C*

Eventually we reach the “goal contour”

• Optimally efficient

• Most times exponential growth occurs

CS 2710 – Informed Search 38

Memory Bounded Heuristic

Search

� Ways of getting around memory issues of
A*:

� IDA* (iterative deepening algorithm)

� Cutoff = f(n) instead of depth

� Recursive Best First Search

� Mimic standard BFS, but use linear space!

� Keeps track of best f(n) from alternate paths

20

CS 2710 – Informed Search 39

RBFS

� F-limit: keeps track of the f-value of the best
alternative path available

� F-value replacement: as the recursion
unwinds, replaces f-value of each node with
the best f-value of its children.

CS 2710 – Informed Search 40

RBFS Exercise

1st Expansion City Pgh

H-Val 50

F-Limit

12 11

City Carnegie City Uniontown

H-Val 4 H-Val 3

F-Val 16 F-Val 14

F-Limit F-Limit 16

RBFS

21

CS 2710 – Informed Search 41

RBFS Exercise

2
nd

 Expansion
City Pgh

H-Val 50

F-Val

F-Limit

12 11

City Carnegie City Uniontown

H-Val 4 H-Val 3

F-Val 16 F-Val 14 -> 20

F-Limit F-Limit 16

9 5

City Wash. City Hickory

H-Val 0 H-Val 20

F-Val 20 F-Val 36

CS 2710 – Informed Search 42

RBFS Exercise

3
rd
 Expansion

City Pgh

H-Val 50

F-Val

F-Limit

12 11

City Carnegie City Uniontown

H-Val 4 H-Val 3

F-Val 16 F-Val 20

F-Limit 20 F-Limit

10 5

City Houston City Wash.

H-Val 7 H-Val 0

F-Val 39 F-Val 17

22

CS 2710 – Informed Search 43

RBFS Review

� F-limit: keeps track of the f-value of the best
alternative path available

� F-value replacement: as the recursion unwinds,
replaces f-value of each node with the best f-value
of its children.

� Disad’s: excessive node regeneration from
recursion

� Too little memory! � use memory-bounded
approaches

� Cutoff when memory bound is reached and other constraints

CS 2710 – Informed Search 44

Local Search / Optimization

� Idea is to find the best state.

� We don’t really care how to get to the best
state, just that we get there.

� The best state is defined according to an
objective function
� Measures the “fitness” of a state.

� Problem: Find the optimal state
� The one that maximizes (or minimizes) the
objective function.

23

CS 2710 – Informed Search 45

State Space Landscapes

Objective Function

State Space

shoulder

global
max

local
max

CS 2710 – Informed Search 46

Problem Formulation

� Complete-state formulation

� Start with an approximate solution and perturb

� n-queens problem

� Place n queens on a board so that no queen is
attacking another queen.

24

CS 2710 – Informed Search 47

Problem Formulation

� Initial State: n queens placed randomly on
the board, one per column.

� Successor function: States that obtained by
moving one queen to a new location in its
column.

� Heuristic/objective function: The number of
pairs of attacking queens.

CS 2710 – Informed Search 48

n-Queens

5

5

4

3

2

3

4

5

2

4

3

4

3

3

2 3

5

4

2

3

1

4

2

2

25

CS 2710 – Informed Search 49

Local Search Algorithms

� Hill climbing

� Simulated annealing

� Local beam search

� Genetic Algorithms

CS 2710 – Informed Search 50

Hill Climbing (or Descent)

Objective Function

State Space

26

CS 2710 – Informed Search 51

Hill Climbing Pseudo-code

•"Like climbing Everest in thick fog with amnesia"

CS 2710 – Informed Search 52

Hill Climbing Problems

Objective Function

State Space

27

CS 2710 – Informed Search 53

n-Queens

5

5

4

3

2

3

4

5

2

4

3

4

3

3

2 3

5

4

2

3

1

4

2

2

What happens if we move 3rd queen?

CS 2710 – Informed Search 54

Possible Improvements

� Stochastic hill climbing

� Choose at random from uphill moves

� Probability of move could be influenced by steepness

� First-choice hill climbing

� Generate successors at random until one is better than
current.

� Random-restart

� Execute hill climbing several times, choose best result.

� If p is probability of a search succeeding, then expected
number of restarts is 1/p.

28

CS 2710 – Informed Search 55

Simulated Annealing

� Similar to stochastic hill climbing

� Moves are selected at random

� If a move is an improvement, accept

� Otherwise, accept with probability less than 1.

� Probability gets smaller as time passes and
by the amount of “badness” of the move.

CS 2710 – Informed Search 56

Simulated Annealing Algorithm

Success

29

CS 2710 – Informed Search 57

Traveling Salesperson Problem

• Tour of cities

• Visit each one exactly once

• Minimize distance/cost/etc.

CS 2710 – Informed Search 58

Local Beam Search

� Keep k states in memory instead of just one

� Generate successors of all k states

� If one is a goal, return the goal

� Otherwise, take k best successors and
repeat.

30

CS 2710 – Informed Search 59

Local Beam Search

Concentrates on
promising paths

CS 2710 – Informed Search 60

Local Beam Search

� Initial k states may not be diverse enough

� Could have clustered around a local max.

� Improvement is stochastic beam search

� Choose k states at random, with probability of
choice an increasing function of its value.

31

CS 2710 – Informed Search 61

Genetic Algorithms

� Variant of stochastic beam search

� Successor states are generated by combining two
parent states
� Hopefully improves diversity

� Start with k states, the population

� Each state, or individual, represented as a string
over a finite alphabet (e.g. DNA)

� Each state is rated by a fitness function

� Select parents for reproduction using the fitness
function

CS 2710 – Informed Search 62

Genetic Algorithms

Taken from http://www.cs.qub.ac.uk/~M.Sullivan/ga/ga_index.html

32

CS 2710 – Informed Search 63

A Genetic Algorithm

