L lInformed Search and Exploration

Chapter 4 (4.1-4.3)

CS 2710

q | Introduction
|

e Ch.3 searches — good
building blocks for
learning about search

» But vastly inefficient eg:

e Can we

Breadth Depth Uniform

Ars Ars Cost
do better? Time| BD BM | >BD(®)
Space| BYD BM >BD (?)
Optimal?] Y N %
Conplete?] Y N %

CS 2710 — Informed Search

q I(Quick Partial) Review

|
Previous algorithms differed in how to select
next node for expansion eg:

Breadth First
Fringe nodes sorted old -> new

Depth First
Fringe nodes sorted new -> old

Uniform cost
Fringe nodes sorted by path cost: small -> big

Used little (no) “external” domain knowledge

CS 2710 - Informed Search 3

q 1 Overview

I
Heuristic Search
Best-First Search Approach
Greedy
A*
Heuristic Functions
Local Search and Optimization
Hill-climbing
Simulated Annealing
Local Beam
Genetic Algorithms

CS 2710 — Informed Search 4

q | Informed Searching

|
An /nformed search strategy uses knowledge
beyond the definition of the problem

The knowledge is embodied in an evaluation
function f(n)

CS 2710 - Informed Search 5

q] Best-First Search

|
An algorithm in which a node is selected for
expansion based on an evaluation function
f(n)

Fringe nodes ordered by f(n)

Traditionally the node with the lowest evaluation
function is selected

Not an accurate name...expanding the best node
first would be a straight march to the goal.

Choose the node that appears to be the best

CS 2710 — Informed Search 6

q | Best-First Search

|
Remember: Uniform cost search

F(n) = g(n)
Best-first search:
F(n) = h(n)

Later, a-star search:
F(n) = g(n) + h(n)

CS 2710 - Informed Search

q 1 Best-First Search (cont.)

I
Some BFS algorithms also include the notion of a
heuristic function h(n)

h(n) = estimated cost of the cheapest path from
node n to a goal node

Best way to include informed knowledge into a
search
Examples:

How far is it from point A to point B

How much time will it take to complete the rest of the
task at current node to finish

CS 2710 — Informed Search

q 1 Greedy Best-First Search

Expands node estimated to be closest to the
goal

f(n) = h(n)
Consider the route finding problem.

Can we use additional information to avoid
costly paths that lead nowhere?

Consider using the straight line distance (SLD)

CS 2710 - Informed Search 9

q 1Route Finding

Straight—line distance

to Bucharest

Arad 366
Bucharest 0
Craiova 160
Dobreta 242
Eforie 161
Fagaras 178
Giurgiu 77
Hirsova 151
lasi 226
Lugoj 244
Mehadia 241
Neamt 234
Oradea 380
Pitesti 98
Rimnicu Vilcea |93
Sibiu 253
Timi: 320
Urzic 80
Vaslu 199
Zerind 374

CS 2710 — Informed Search 10

1 IIRoute Finding: Greedy Best First
e o

- f(n) = 366

CS 2710 - Informed Search 11

1 IIRoute Finding: Greedy Best First
e al =

f(n) = 366

374

CS 2710 — Informed Search 12

1IIRoute Finding: Greedy Best First
[

i o

f(n) = 366

CS 2710 - Informed Search

193

13

1IIR0ute Finding: Greedy Best First
e

f(n) = 366

CS 2710 — Informed Search

193

14

q | Exercise

[JOradea
Straight—line distance
to Bucharest

Arad 366
Bucharest 0
Craiova 160
Dobreta 242
Eforie 161
Fagaras 178
Giurgiu 77
Hirsova 151
lasi 226
Lugoj 244
Mehadia 241
Neamt 234
Oradea 380
Pitesti 98
Hi Rimnicu Vilcea |93
[JHirsova Sibin 253
o Timisoara 320
Urziceni 80
Vaslui 199
Ferind 374

Eforie

So is Arad->Sibiu->Fagaras->Bucharest optimal?

CS 2710 - Informed Search 15

q | Greedy Best-First Search

I
Not optimal.

Not complete.
Could go down a path and never return to try another.
e.g., Iasi > Neamt - lasi > Neamt - ...

Space Complexity

O(b™) — keeps all nodes in memory
Time Complexity

O(b™) (but a good heuristic can give a dramatic improvement)

CS 2710 — Informed Search 16

q | Heuristic Functions

[
* Example: 8-Puzzle

— Average solution cost for a random
puzzle is 22 moves

— Branching factor is about 3
* Empty tile in the middle -> four moves
* Empty tile on the edge -> three moves
* Empty tile in corner -> two moves

— 322 s approx 3.1e10
* Get rid of repeated states
¢ 181,440 distinct states

CS 2710 - Informed Search

o -]
DRpERE

=l lf]

Start State

-
=l o]~

Goal State

17

q | Heuristic Functions

HERmEaa

sl el felle]

]

O ER

Start State Goal State

* hl = number of misplaced tiles

* h2 = sum of distances of tiles to goal position.

CS 2710 — Informed Search

18

q | Heuristic Functions
|
hli=7
h2 = 44+0+3+3+1+0+2+1 = 14

TR [
S [

Start State Goal State

=)o)l ~]
-]

CS 2710 - Informed Search 19

q] Admissible Heuristics

I
A heuristic function h(n) is admissible if it never
overestimates the cost to reach the goal from n
Another property of heuristic functions is
consistency
h(n) < c(n,a,n”) + h(n") where:
c(n,a,n") is the cost to get to n’ from n using action a.
Consistent h(n) = the values of f(n) along any path are
non-decreasing

Graph search is optimal if h(n) is consistent

CS 2710 — Informed Search 20

q | Heuristic Functions
|
Is hl (#of displaced tiles)
admissible?
consistent?

Is h2 (Manhattan distance)
admissible?
consistent?

CS 2710 - Informed Search 21

q | Dominance

I

If hy(n)= h,(n)for all n(both admissible)
then A, dominates A,
h,is better for search

Typical search costs (average number of nodes expanded):

d=12 1DS = 3,644,035 nodes
A*éhlg = 227 nodes

A*(h,) = 73 nodes

d=24 1DS = too many nodes
A*ghlg = 39,135 nodes

A*(h,) = 1,641 nodes OJ

CS 2710 — Informed Search 22

q | Heuristic Functions

|
Heuristics are often obtained from relaxed
problem
Simplify the original problem by removing
constraints

The cost of an optimal solution to a relaxed
problem is an admissible heuristic.

CS 2710 - Informed Search 23

q | 8-Puzzle

|
Original

A tile can move from Ato Bif Ais horizontally or
vertically adjacent to Band Bis blank.

Relaxations

Move from Ato Bif Ais adjacent to Bremove "blank”)
h2 by moving each tile in turn to destination

Move from Ato B (remove “adjacent” and "blank”)
h1 by simply moving each tile directly to destination

CS 2710 — Informed Search 24

B oy, to, Obtain Heuristies?

Ask the domain expert (if there is one)

Solve example problems and generalize your experience on which
operators are helpful in which situation (particularly important for
state space search)

Try to develop sophisticated evaluation functions that measure the
closeness of a state to a goal state (particularly important for state
space search)

Run your search algorithm with different parameter settings trying to
determine which parameter settings of the chosen search algorithm
are “good” to solve a particular class of problems.

Write a program that selects “good parameter” settings based on
problem characteristics (frequently very difficult) relying on machine
learning

CS 2710 - Informed Search 25

q] A* Search

The greedy best-first search does not
consider how costly it was to get to a node.

f(n) = h(n)
Idea: avoid expanding paths that are already
expensive

Combine g(n), the cost to reach node n, with
h(n)

f(n) = g(n) + h(n)
estimated cost of cheapest solution through n

CS 2710 — Informed Search 26

q] A* Search

|

When h(n) = actual cost to goal
Only nodes in the correct path are expanded
Optimal solution is found

When h(n) < actual cost to goal
Additional nodes are expanded
Optimal solution is found

When h(n) > actual cost to goal
Optimal solution can be overlooked

CS 2710 - Informed Search 27

q] A* Search

I
Complete
Yes, unless there are infinitely many nodes with f <= f(G)
Time
Exponential in [relative error of h x length of soln]
The better the heuristic, the better the time
Best case h is perfect, O(d)
Worst case h = 0, O(bd) same as BFS
Space
Keeps all nodes in memory and save in case of repetition
This is O(b%) or worse
A* usually runs out of space before it runs out of time
Optimal
Yes, cannot expand f_, unless f; is finished

CS 2710 — Informed Search 28

q 1Route Finding
|

[JOradea

Straight—line distance
to Bucharest

Arad 366
B.Ill‘hx rest 0
160
i
178
ns 161
Lugoj 24
Mehadia 241
Neamt 234
Oradea 380
Pitesti 98
Hirsova Rimnicu Vilcea 12,
Dobreta [])::ulll:(ll !?D
[]Giurgiu Eforie
CS 2710 - Informed Search 29
| A* Example
I
Straight—line distance
to Bucharest
Arad 366
Bucharest 0
Craiova 160
Dobreta 242
Eforie 161
Fagaras 78
Giurgiu 77
Hirsova 151
lasi 22
Lugoj 244
Mehadia 241
Neamt 234
Oradea 380
Pitesti 08
Rimnicu Vilcea |93
Sibiu 253
Timisoara 320
Urziceni 80
Vaslui 199
Ferind 374
CS 2710 - Informed Search 30

1I A* Search
n i

f(n) = 0 + 366

CS 2710 - Informed Search 31

1| A* Search Continued
.l i

415

450 591

418 615 607

CS 2710 — Informed Search 32

q 1 A* Properties review
|

Complete

Yes, unless there are infinitely many nodes with f <= f(G)
Time

Exponential in [relative error of h x length of soln]
The better the heuristic, the better the time
Best case h is perfect, O(d)

Worst case h = 0, O(bd) same as BFS
Space

Keeps all nodes in memory and save in case of repetition
This is O(b%) or worse
A* usually runs out of space before it runs out of time
Optimal

Yes, cannot expand f, unless f; is finished

CS 2710 - Informed Search

33

q | A* Exercise
|

1st Bxaansion

aty Pgh
HVal %0)
Fringe 14, 16
12 N
Gty | Camegie | Gty [Uniontown
HVal 4 HVal 3
FVal 16 FVal 14
Fringe Fringe

CS 2710 — Informed Search

34

1A%

Exercise

CS 2710 — Informed Search

2™ Bxoansion
Pgh |
HVal 50
F-Val
Fringe
12 1
Gty Camegie City | Uniontown
HVal 4 HVal 3
F-Val 16 F-Val
Fringe Fringe | 16 20, 36
) K
Gty Wash. Gty | Hdwory
HVal 0 HVal 20
FVal 20 FVal 36
CS 2710 - Informed Search 35
] A* Exercise
Gty Pgh
HVal 50
F-Val
Fringe
y 1
City Camegie City Uniontown|
HVal 4 HVal 3
FVal FVal
Fringe |17,20,29,34 Fringe
10 ~5 9 5
Gty | Houslon Gty Wash. Gty | Hdwory
HVal 7 HVal 0 HVal 20
FVal 2 FVal 17 FVal 6

36

q | A* Search; complete
|

* A* is complete.

A* builds search “bands” of increasing f(n)
At all points f(n) < C*
Eventually we reach the “goal contour”

* Optimally efficient
* Most times exponential growth occurs

CS 2710 - Informed Search 37

Memory Bounded Heuristic
Search

Ways of getting around memory issues of

A*;

IDA* (iterative deepening algorithm)
Cutoff = f(n) instead of depth

Recursive Best First Search
Mimic standard BFS, but use linear space!
Keeps track of best f(n) from alternate paths

CS 2710 — Informed Search 38

q | RBFS
|
F-limit: keeps track of the f-value of the best
alternative path available
F-value replacement: as the recursion
unwinds, replaces f-value of each node with
the best f-value of its children.

CS 2710 - Informed Search 39

q | RBFS Exercise

1st Baansion Gty Pgh
HVal 50 RBFS
FLimit
12 11
City Camegie Gty Uniontown
HVal 4 HVal 3
F-Val 16 FVal 14
FLimit FLimit 16

CS 2710 — Informed Search 40

| RBFS

Exercise

2™ Boansion
aty Pgh
HVal 50
F-Val
FLimit
12 11
Gty Camegie City Uniontown|
HVal 4 HVal 3
F-Val 16 F-Val 14 > 20
FLimit FLimit 16
9 5
Gty Wash. Gty Hickory
HVal 0 HVal 2
F-Val 2 F-Val 36
CS 2710 - Informed Search 41
| RBFS Exercise
I
3 Bqoansion
Gty Pgh
HVal 50
F-Val
FLimit
12 11
City Camege Gty |Uniontown
HVal 4 HVal 3
F-Val 16 F-Val 20
F-Limit 20 F-Limit
10 5
Gty Houston Gty Wash.
HVal 7 HVal 0
F-Val 30 F-Val 17

CS 2710 — Informed Search

42

q |RBFS Review

I
F-limit: keeps track of the f-value of the best
alternative path available

F-value replacement: as the recursion unwinds,
replaces f-value of each node with the best f-value
of its children.

Disad’s: excessive node regeneration from
recursion

Too little memory! - use memory-bounded

approaches
Cutoff when memory bound is reached and other constraints

CS 2710 - Informed Search 43

q 1Local Search / Optimization

|
Idea is to find the best state.

We don't really care how to get to the best
state, just that we get there.

The best state is defined according to an
objective function

Measures the “fitness” of a state.
Problem: Find the optimal state

The one that maximizes (or minimizes) the
objective function.

CS 2710 — Informed Search 44

1] IState Space Landscapes
wp o

Objective Function

State Space

CS 2710 - Informed Search 45

1] Problem Formulation
-
= Complete-state formulation
Start with an approximate solution and perturb
= N-queens problem

Place n queens on a board so that no queen is
attacking another queen.

CS 2710 — Informed Search 46

1 | |Problem Formulation
w4

= Initial State: n queens placed randomly on
the board, one per column.

= Successor function: States that obtained by
moving one queen to a new location in its
column.

= Heuristic/objective function: The number of
pairs of attacking queens.

CS 2710 - Informed Search 47

T In-Queens
o e

CS 2710 — Informed Search 48

q 1 Local Search Algorithms

|
Hill climbing

Simulated annealing
Local beam search
Genetic Algorithms

CS 2710 - Informed Search 49

q 1 Hill Climbing (or Descent)

Objective Function

State Space
CS 2710 — Informed Search 50

q 1 Hill Climbing Pseudo-code

*"Like climbing Everest in thick fog with amnesia"

function HILL-CLIMBING({ problem) returns a state that is a local maximum
inputs: problem, a problem
local variables: current, a node
neighbor, a node

cugment +— MAKE-NODE(INITIAL-STATE[problem])

loop do
neighbor 4 a highest-valued successor of current
if VALUE[neighbor] < VALUE[current] then return STATE[current]
current +— neighbor

CS 2710 - Informed Search 51

q 1 Hill Climbing Problems

Objective Function

State Space
CS 2710 — Informed Search 52

What happens if we move 3rd queen?

CS 2710 - Informed Search 53

1] IPossible Improvements
ap o

= Stochastic hill climbing

Choose at random from uphill moves

Probability of move could be influenced by steepness
= First-choice hill climbing

Generate successors at random until one is better than
current.

= Random-restart
Execute hill climbing several times, choose best result.

If p is probability of a search succeeding, then expected
number of restarts is 1/p.

CS 2710 — Informed Search 54

q 1 Simulated Annealing

I

Similar to stochastic hill climbing
Moves are selected at random
If a move is an improvement, accept
Otherwise, accept with probability less than 1.

Probability gets smaller as time passes and
by the amount of “"badness” of the move.

CS 2710 - Informed Search 55

q | Simulated Annealing Algorithm

function SIMULATED-ANNEALING(problem., schedule) returns a solution state
inputs: problem., a problem
schedule, a mapping from time to “temperature™
local variables: curnent. a node
next, a node

T. a “temperature” controlling the probability of downward steps

current < MAKE-NODE(INITIAL-STATE] problem])
fort+— 1 to oo do
T+ schedule[t]
if T"= 0 then return curnent
nert +— a randomly selected successor of current
AFE ¢ VALUE[next] — VALUE[current]
it AR > 0 then current + negt ————— _

clse current +— next only with probability e®#/T

CS 2710 — Informed Search 56

q | Traveling Salesperson Problem

|
e Tour of cities

 Visit each one exactly once
* Minimize distance/cost/etc.

Va

CS 2710 - Informed Search 57

q] Local Beam Search

|
Keep k states in memory instead of just one

Generate successors of all k states
If one is a goal, return the goal

Otherwise, take k best successors and
repeat.

CS 2710 — Informed Search 58

1||Loca1 Beam Search

O 0Q O
a»
CS 2710 — Informed Search 59
1] ILoc:al Beam Search
h =

= Initial k states may not be diverse enough
« Could have clustered around a local max.
= Improvement is stochastic beam search

= Choose k states at random, with probability of
choice an increasing function of its value.

CS 2710 — Informed Search 60

q 1 Genetic Algorithms

|
Variant of stochastic beam search

Successor states are generated by combining two
parent states

Hopefully improves diversity
Start with k states, the population

Each state, or /ndividual, represented as a string
over a finite alphabet (e.g. DNA)

Each state is rated by a fitness function

Select parents for reproduction using the fitness
function

CS 2710 - Informed Search

61

q 1 Genetic Algorithms

00 10010
10 01100

Crossover in Action

|

Mutate

10000 ——— 10010

Roulette Wheel Selection

Taken from

CS 2710 — Informed Search

62

| A Genetic Algorithm

function GENETIC- ALGORITHM{ pepulation. FITNESS-FN) returns an mdividual

inputs: popwulation. a set of individuals
FITNESS-FN, a function that measures the fitness of an individual

repeat
new_population +—empty set
loop for % from | to S1ZE(population) do
T4 RANDOM-SELECTION(population, FITNESS-FN)
44— RANDOM-SELECTION(population. FITNESS-FN)
child + REPRODUCE(Z,)
if (small random probability) then ehild +— MUTATE(child)
add ehild to new_population
population +— new_population
until some individual is fit enough, or enough time has elapsed
return the best individual in population. according to FITNESS-FN

function REPRODUCE(z, ¥) returns an individual
inputs: 2. y. parent individuals

74— LENGTH(z)
¢4 random number from 1 to
return APPEND(SUBSTRING(z, I, ¢), St [ZS]']{[\'(?(;&C+1,N.})

CS 2710 - Informed Search

63

